一问解读OpenCV的计算机视觉中视频处理

本文是关于使用OpenCV进行计算机视觉的Python教程,涵盖了OpenCV的基础知识,包括计算机视觉概念、图像读取、图像处理、视频捕获及人脸检测。通过实例展示了如何使用OpenCV进行人脸检测和运动检测,适合初学者入门。
摘要由CSDN通过智能技术生成

微信公众号:小白图像与视觉

关于技术、关注yysilence00。有问题或建议,请公众号留言。

了解OpenCV的计算机视觉

OpenCV Python教程

在本OpenCV Python教程中,我们将介绍在Python中使用OpenCV进行计算机视觉的各个方面。长期以来,OpenCV一直是软件开发中至关重要的部分。

什么是计算机视觉?

为了简化答案,让我们考虑一个场景。
假设您和您的朋友去度假,您将一堆图片上传到了Facebook。但是现在要花些时间才能找到朋友的脸并在每张照片中标记它们。实际上,Facebook足够聪明,可以为您标记人物
那么,您如何看待自动标记功能?简而言之,它通过计算机视觉起作用。
计算机视觉是一个跨学科领域,涉及如何制作计算机以从数字图像或视频获得高层次的理解。

计算机如何读取图像?

在这里插入图片描述

我们可以发现这是纽约天际线的图像。但是,计算机可以自己找出所有这些吗?答案是不!计算机读取的任何图像的取值范围为0到255。
对于任何彩色图像,都有3个主要通道-红色,绿色和蓝色。它的工作原理非常简单。
为每种原色形成一个矩阵,然后,这些矩阵组合以提供每种R,G和B颜色的像素值。
矩阵的每个元素提供有关像素亮度强度的数据。
考虑下图:

如图所示,此处图像的大小可以计算为B x A x 3
注意:对于黑白图像,只有一个单一通道。
现在让我们看一下OpenCV到底是什么。

什么是OpenCV?

OpenCV是一个旨在解决计算机视觉问题的Python库。OpenCV最初是由Intel在1999年开发的,但后来得到Willow Garage的支持。它支持多种编程语言,例如C ++,Python,Java等。支持多种平台,包括Windows,Linux和MacOS。
OpenCV Python只是用于Python的原始C ++库的包装类。使用此方法,所有OpenCV数组结构都可以与NumPy数组进行相互转换。这样可以更轻松地将其与使用NumPy的其他库集成。例如,诸如SciPy和Matplotlib之类的库。

使用OpenCV的基本操作?

让我们看一下从加载图像到调整图像大小等各种概念。

  • 1、使用OpenCV加载图像
Import cv2

# colored Image
Img = cv2.imread ("Penguins.jpg",1)

# Black and White (gray scale)
Img_1 = cv2.imread ("Penguins.jpg",0)

如以上代码所示,第一个要求是导入OpenCV模块。
稍后,我们可以使用imread模块读取图像。参数中的1表示它是彩色图像。如果参数是0而不是1,则意味着导入的图像是黑白图像。图像的名称是“企鹅”。很简单吧?

  • 2、图像形状/分辨率

使用shape子函数来输出图片的形状。查看代码:

Import cv2  

# Black and White (gray scale)  

Img = cv2.imread ("Penguins.jpg",0)  

Print(img.shape)  

通过图像的形状,我们指的是NumPy数组的形状。从执行代码中

├─1.计算机视觉简介、环境准备(python, ipython) │ computer vsion.pdf │ CS231 introduction.pdf │ ├─2.图像分类问题简介、kNN分类器、线性分类器、模型选择 │ 2. 图像分类简介、kNN与线性分类器、模型选择.mp4 │ 2.初识图像分类.pdf │ ├─3.再谈线性分类器 │ 3.再谈线性分类器.mp4 │ 再谈线性分类器.pdf │ ├─4.反向传播算法和神经网络简介 │ .反向传播算法和神经网络简介.pdf │ 4. 反向传播算法和神经网络简介.mp4 │ ├─5.神经网络训练1 │ 5.-神经网络训练1.pdf │ 5.神经网络训练1.mp4 │ ├─6.神经网络训练2、卷积神经网络简介 │ 6.神经网络训练2.mp4 │ 神经网络训练2.pdf │ ├─7.卷积神经网络 │ 7.卷积神经网络.mp4 │ Lession7.pdf │ ├─8.图像OCR技术的回顾、进展及应用前景 │ 8.图像OCR技术的回顾、进展及应用前景.mp4 │ PhotoOCR_xbai.pdf │ └─9.物体定位检测 物体定位检测.pdf │ ├─10.卷积神经网络可视化 │ .卷积神经网络可视化.pdf │ 10.卷积神经网络可视化.mp4 │ ├─11.循环神经网络及其应用 │ 11.循环神经网络及其应用.mp4 │ 循环神经网络.pdf │ ├─12.卷积神经网络实战 │ 12.卷积神经网络训练实战.mp4 │ 卷积神经网络实战.pdf │ ├─13.常见深度学习框架介绍 │ 常见深度学习框架介绍.pdf │ ├─14.图像切割 │ 14.图像切割.mp4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值