BUAA OJ 843 ModricWang和数论【数论】

题目描述

给定一个正整数a,对于所有的正整数b,求a%b可能有多少种不同的值?

输入

一个整数a, 1 ≤ a ≤ 1 0 18 1≤a≤10^{18} 1a1018

输出

一个整数,a%b可能出现的不同的值的个数

思路

暴力找规律

#include <set>
#include <iostream>

using namespace std;

int main(){
    for (int a = 1; a < 1000; ++a) {
        set<int> s;
        for (int b = 1; b <= a + 10; b++) {
            s.insert(a % b);
        }
        cout << s.size() << ' ';
    }
}

输出为

2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 ...

事实上,对于正整数 a a a a   m o d   b a \bmod b amodb的不同取值的个数为

⌊ a − 1 2 ⌋ + 2 \lfloor\frac{a-1}{2}\rfloor+2 2a1+2

  1. a < b a<b a<b 时, a   m o d   b = a a \bmod b=a amodb=a,其它情况, a   m o d   b ⩽ ⌊ a − 1 2 ⌋ a \bmod b\leqslant \lfloor\frac{a-1}{2}\rfloor amodb2a1
  2. [ 0 , ⌊ a − 1 2 ⌋ ] [0,\lfloor\frac{a-1}{2}\rfloor] [0,2a1] 中的所有整数 a   m o d   b a \bmod b amodb 都可以取到,对于任意的 k ∈ [ 0 , ⌊ a − 1 2 ⌋ ] k\in[0,\lfloor\frac{a-1}{2}\rfloor] k[0,2a1] a   m o d   ( a − k ) = k a \bmod (a-k)=k amod(ak)=k

代码

#include <iostream>

using namespace std;

int main() {
    long long a;
    while (cin>>a){
        cout<<(a-1)/2+2<<'\n';
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值