DP初学习

dp一般用于解决多阶段决策问题,即每个阶段都要做一个决策,全部的决策是一个决策序列,要你求一个

最好的决策序列使得这个问题有最优解

将待求解的问题分为若干个相互联系的子问题,只在第一次遇到的时候求解,然后将这个子问题的答案保存下来,下次又遇到的时候直接拿过来用即可。

一般有两种策略

一种是递归,另一种是迭代

例题1

# [NOIP2005 普及组] 采药

## 题目描述

辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”


如果你是辰辰,你能完成这个任务吗?

## 输入格式

第一行有 $2$ 个整数 $T$($1 \le T \le 1000$)和 $M$($1 \le  M \le 100$),用一个空格隔开,$T$ 代表总共能够用来采药的时间,$M$ 代表山洞里的草药的数目。

接下来的 $M$ 行每行包括两个在 $1$ 到 $100$ 之间(包括 $1$ 和 $100$)的整数,分别表示采摘某株草药的时间和这株草药的价值。

## 输出格式

输出在规定的时间内可以采到的草药的最大总价值。

## 样例 #1

### 样例输入 #1

```
70 3
71 100
69 1
1 2
```

### 样例输出 #1

```
3
```

## 提示

**【数据范围】**

- 对于 $30\%$ 的数据,$M \le 10$;
- 对于全部的数据,$M \le 100$。

**【题目来源】**

NOIP 2005 普及组第三题

本题思路:

最基础的Dp

设置book组存储已经求出的结果

从而减少时间复杂度

对其先判断能否取

再判断是否取药

代码如下:

#include<bits/stdc++.h>
using namespace std;
int n,wei;
int v[102],w[102];
int book[101][1001];
int dfs(int nn,int wn)
{
	if(book[nn][wn]!=-1)
	return book[nn][wn];
	int ans;
	if(nn==0)
	ans=0;
else if(w[nn]>wn)
	ans=dfs(nn-1,wn);
	else 
	ans=max(dfs(nn-1,wn),dfs(nn-1,wn-w[nn])+v[nn]);
	book[nn][wn]=ans;
	return ans;
}
int main()
{   memset(book,-1,sizeof(book));
	cin>>wei>>n;
	for(int i=1;i<=n;i++)
	cin>>w[i]>>v[i];
	cout<<dfs(n,wei);
}

第二题

# 最长上升子序列

## 题目描述

这是一个简单的动规板子题。

给出一个由 $n(n\le 5000)$ 个不超过 $10^6$ 的正整数组成的序列。请输出这个序列的**最长上升子序列**的长度。

最长上升子序列是指,从原序列中**按顺序**取出一些数字排在一起,这些数字是**逐渐增大**的。

## 输入格式

第一行,一个整数 $n$,表示序列长度。

第二行有 $n$ 个整数,表示这个序列。

## 输出格式

一个整数表示答案。

## 样例 #1

### 样例输入 #1

```
6
1 2 4 1 3 4
```

### 样例输出 #1

```
4
```

## 提示

分别取出 $1$、$2$、$3$、$4$ 即可。

 

思路:

设ans【x】是以第x个数结尾的最长上升序列

for循环分别求出每个x

使用sort排序

输出ans【0】

即可

代码如下:

#include<bits/stdc++.h>
using namespace std;
int n;
int v[5002];
int book[5002];
int dfs(int i)
{
	if(i==1)
	return 1;
	if(book[i]!=0)
	return book[i];
	int ans=1;
	for(int k=1;k<i;k++)
	{
		if(v[k]<v[i])
		{
		
		ans=max(ans,dfs(k)+1);}
		
	}
	
	return ans;
}

int main()
{memset(book,0,sizeof(book));

	cin>>n;
	for(int i=1;i<=n;i++)
	
	cin>>v[i];
	for(int i=1;i<=n;i++)
	{
	book[i]=dfs(i);
}
sort(book,book+n+1,greater<int>());
cout<<book[0];
	
}

第三题:

# 最大子段和

## 题目描述

给出一个长度为 $n$ 的序列 $a$,选出其中连续且非空的一段使得这段和最大。

## 输入格式

第一行是一个整数,表示序列的长度 $n$。

第二行有 $n$ 个整数,第 $i$ 个整数表示序列的第 $i$ 个数字 $a_i$。

## 输出格式

输出一行一个整数表示答案。

## 样例 #1

### 样例输入 #1

```
7
2 -4 3 -1 2 -4 3
```

### 样例输出 #1

```
4
```

## 提示

#### 样例 1 解释

选取 $[3, 5]$ 子段 $\{3, -1, 2\}$,其和为 $4$。

#### 数据规模与约定

- 对于 $40\%$ 的数据,保证 $n \leq 2 \times 10^3$。
- 对于 $100\%$ 的数据,保证 $1 \leq n \leq 2 \times 10^5$,$-10^4 \leq a_i \leq 10^4$。

 

思路:

和第二题类似

递推公式是

ans[x]=max(v[x],ans[x-1]+v[x])

在代码实现时有一个测试点难以过

因为有可能最后结果是负数

因此memset的时候不能赋值为0或者-1

应该赋值为0xc0c0c0c0

代码实现如下:

#include<bits/stdc++.h>
using namespace std;
int n;
int v[200005];
int book[200005];
int dfs(int i)
{
	if(i==1)
	return v[1];
	if(book[i]!=0xc0c0c0c0)
	return book[i];
	int ans=v[i];
	ans=max(ans,dfs(i-1)+v[i]);
	
	return ans;
}

int main()
{memset(book,0xc0c0c0c0,sizeof(book));

	cin>>n;
	for(int i=1;i<=n;i++)
	
	{
	cin>>v[i];}
	for(int i=n;i<=n+6;i++)

	
	for(int i=1;i<=n;i++)
	{
	book[i]=dfs(i);
}
sort(book,book+n+1,greater<int>());
cout<<book[0];
	
}

 

第四题:

# LCS

## 题面翻译

题目描述:

给定一个字符串 $s$ 和一个字符串 $t$ ,输出 $s$ 和 $t$ 的最长公共子序列。

输入格式:

两行,第一行输入 $s$ ,第二行输入 $t$ 。

输出格式:

输出 $s$ 和 $t$ 的最长公共子序列。如果有多种答案,输出任何一个都可以。

说明/提示:

数据保证 $s$ 和 $t$ 仅含英文小写字母,并且 $s$ 和 $t$ 的长度小于等于3000。

## 题目描述

[problemUrl]: https://atcoder.jp/contests/dp/tasks/dp_f

文字列 $ s $ および $ t $ が与えられます。 $ s $ の部分列かつ $ t $ の部分列であるような文字列のうち、最長のものをひとつ求めてください。

## 输入格式

入力は以下の形式で標準入力から与えられる。

> $ s $ $ t $

## 输出格式

$ s $ の部分列かつ $ t $ の部分列であるような文字列のうち、最長のものをひとつ出力せよ。 答えが複数ある場合、どれを出力してもよい。

## 样例 #1

### 样例输入 #1

```
axyb
abyxb
```

### 样例输出 #1

```
axb
```

## 样例 #2

### 样例输入 #2

```
aa
xayaz
```

### 样例输出 #2

```
aa
```

## 样例 #3

### 样例输入 #3

```
a
z
```

### 样例输出 #3

```

```

## 样例 #4

### 样例输入 #4

```
abracadabra
avadakedavra
```

### 样例输出 #4

```
aaadara
```

## 提示

### 注釈

文字列 $ x $ の*部分列*とは、$ x $ から $ 0 $ 個以上の文字を取り除いた後、残りの文字を元の順序で連結して得られる文字列のことです。

### 制約

- $ s $ および $ t $ は英小文字からなる文字列である。
- $ 1\ \leq\ |s|,\ |t|\ \leq\ 3000 $

### Sample Explanation 1

答えは `axb` または `ayb` です。 どちらを出力しても正解となります。

### Sample Explanation 3

答えは `` (空文字列) です。

思路:

递归方程f(a,b)=f(a-1,b-1)+1(如果第a个字符和第b个字符相同)

否则f(a,b)=max(f(a-1,b),f(a,b-1))

本题思路主要卡在了如何保存并输出结果

思考(看题解)之后才发现

可以设 s 长度为 l1​,t 长度为 l2​。

 

所以在求解完数量后,可以按照刚才的过程,从 dp[l1][l2]开始逆向转移。

在遇到每一个 s[i] = t[i]s[i]=t[i] 时,记录当前字符,最后反向输出即可。 

#include <iostream>
using namespace std;
const int kMaxL = 3001;
string s1, s2;
int dp[kMaxL][kMaxL];
char ans[kMaxL];
int l1, l2, num;
int main() {
  cin >> s1 >> s2;
  l1 = s1.size(), l2 = s2.size();
  for (int i = 1; i <= l1; i++) {  // 求解字符数
    for (int j = 1; j <= l2; j++) {
      if (s1[i - 1] == s2[j - 1]) {
        dp[i][j] = dp[i - 1][j - 1] + 1;
      } else {
        dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
      }
    }
  }
  num = dp[l1][l2];
  for (int i = l1, j = l2; num;) {  // 反向转移
    if (s1[i - 1] == s2[j - 1]) {
      ans[num--] = s1[--i];        // 记录最长公共子序列
      --j;
    } else if (dp[i][j] == dp[i - 1][j]) {
      i--;
    } else if (dp[i][j] == dp[i][j - 1]) {
      j--;
    }
  }
  for (int i = 1; i <= dp[l1][l2]; i++) {
    cout << ans[i];
  }
  return 0;
}

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值