dp一般用于解决多阶段决策问题,即每个阶段都要做一个决策,全部的决策是一个决策序列,要你求一个
最好的决策序列使得这个问题有最优解
将待求解的问题分为若干个相互联系的子问题,只在第一次遇到的时候求解,然后将这个子问题的答案保存下来,下次又遇到的时候直接拿过来用即可。
一般有两种策略
一种是递归,另一种是迭代
例题1
# [NOIP2005 普及组] 采药
## 题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?## 输入格式
第一行有 $2$ 个整数 $T$($1 \le T \le 1000$)和 $M$($1 \le M \le 100$),用一个空格隔开,$T$ 代表总共能够用来采药的时间,$M$ 代表山洞里的草药的数目。
接下来的 $M$ 行每行包括两个在 $1$ 到 $100$ 之间(包括 $1$ 和 $100$)的整数,分别表示采摘某株草药的时间和这株草药的价值。
## 输出格式
输出在规定的时间内可以采到的草药的最大总价值。
## 样例 #1
### 样例输入 #1
```
70 3
71 100
69 1
1 2
```### 样例输出 #1
```
3
```## 提示
**【数据范围】**
- 对于 $30\%$ 的数据,$M \le 10$;
- 对于全部的数据,$M \le 100$。**【题目来源】**
NOIP 2005 普及组第三题
本题思路:
最基础的Dp
设置book组存储已经求出的结果
从而减少时间复杂度
对其先判断能否取
再判断是否取药
代码如下:
#include<bits/stdc++.h>
using namespace std;
int n,wei;
int v[102],w[102];
int book[101][1001];
int dfs(int nn,int wn)
{
if(book[nn][wn]!=-1)
return book[nn][wn];
int ans;
if(nn==0)
ans=0;
else if(w[nn]>wn)
ans=dfs(nn-1,wn);
else
ans=max(dfs(nn-1,wn),dfs(nn-1,wn-w[nn])+v[nn]);
book[nn][wn]=ans;
return ans;
}
int main()
{ memset(book,-1,sizeof(book));
cin>>wei>>n;
for(int i=1;i<=n;i++)
cin>>w[i]>>v[i];
cout<<dfs(n,wei);
}
第二题
# 最长上升子序列
## 题目描述
这是一个简单的动规板子题。
给出一个由 $n(n\le 5000)$ 个不超过 $10^6$ 的正整数组成的序列。请输出这个序列的**最长上升子序列**的长度。
最长上升子序列是指,从原序列中**按顺序**取出一些数字排在一起,这些数字是**逐渐增大**的。
## 输入格式
第一行,一个整数 $n$,表示序列长度。
第二行有 $n$ 个整数,表示这个序列。
## 输出格式
一个整数表示答案。
## 样例 #1
### 样例输入 #1
```
6
1 2 4 1 3 4
```### 样例输出 #1
```
4
```## 提示
分别取出 $1$、$2$、$3$、$4$ 即可。
思路:
设ans【x】是以第x个数结尾的最长上升序列
for循环分别求出每个x
使用sort排序
输出ans【0】
即可
代码如下:
#include<bits/stdc++.h>
using namespace std;
int n;
int v[5002];
int book[5002];
int dfs(int i)
{
if(i==1)
return 1;
if(book[i]!=0)
return book[i];
int ans=1;
for(int k=1;k<i;k++)
{
if(v[k]<v[i])
{
ans=max(ans,dfs(k)+1);}
}
return ans;
}
int main()
{memset(book,0,sizeof(book));
cin>>n;
for(int i=1;i<=n;i++)
cin>>v[i];
for(int i=1;i<=n;i++)
{
book[i]=dfs(i);
}
sort(book,book+n+1,greater<int>());
cout<<book[0];
}
第三题:
# 最大子段和
## 题目描述
给出一个长度为 $n$ 的序列 $a$,选出其中连续且非空的一段使得这段和最大。
## 输入格式
第一行是一个整数,表示序列的长度 $n$。
第二行有 $n$ 个整数,第 $i$ 个整数表示序列的第 $i$ 个数字 $a_i$。
## 输出格式
输出一行一个整数表示答案。
## 样例 #1
### 样例输入 #1
```
7
2 -4 3 -1 2 -4 3
```### 样例输出 #1
```
4
```## 提示
#### 样例 1 解释
选取 $[3, 5]$ 子段 $\{3, -1, 2\}$,其和为 $4$。
#### 数据规模与约定
- 对于 $40\%$ 的数据,保证 $n \leq 2 \times 10^3$。
- 对于 $100\%$ 的数据,保证 $1 \leq n \leq 2 \times 10^5$,$-10^4 \leq a_i \leq 10^4$。
思路:
和第二题类似
递推公式是
ans[x]=max(v[x],ans[x-1]+v[x])
在代码实现时有一个测试点难以过
因为有可能最后结果是负数
因此memset的时候不能赋值为0或者-1
应该赋值为0xc0c0c0c0
代码实现如下:
#include<bits/stdc++.h>
using namespace std;
int n;
int v[200005];
int book[200005];
int dfs(int i)
{
if(i==1)
return v[1];
if(book[i]!=0xc0c0c0c0)
return book[i];
int ans=v[i];
ans=max(ans,dfs(i-1)+v[i]);
return ans;
}
int main()
{memset(book,0xc0c0c0c0,sizeof(book));
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>v[i];}
for(int i=n;i<=n+6;i++)
for(int i=1;i<=n;i++)
{
book[i]=dfs(i);
}
sort(book,book+n+1,greater<int>());
cout<<book[0];
}
第四题:
# LCS
## 题面翻译
题目描述:
给定一个字符串 $s$ 和一个字符串 $t$ ,输出 $s$ 和 $t$ 的最长公共子序列。
输入格式:
两行,第一行输入 $s$ ,第二行输入 $t$ 。
输出格式:
输出 $s$ 和 $t$ 的最长公共子序列。如果有多种答案,输出任何一个都可以。
说明/提示:
数据保证 $s$ 和 $t$ 仅含英文小写字母,并且 $s$ 和 $t$ 的长度小于等于3000。
## 题目描述
[problemUrl]: https://atcoder.jp/contests/dp/tasks/dp_f
文字列 $ s $ および $ t $ が与えられます。 $ s $ の部分列かつ $ t $ の部分列であるような文字列のうち、最長のものをひとつ求めてください。
## 输入格式
入力は以下の形式で標準入力から与えられる。
> $ s $ $ t $
## 输出格式
$ s $ の部分列かつ $ t $ の部分列であるような文字列のうち、最長のものをひとつ出力せよ。 答えが複数ある場合、どれを出力してもよい。
## 样例 #1
### 样例输入 #1
```
axyb
abyxb
```
### 样例输出 #1
```
axb
```
## 样例 #2
### 样例输入 #2
```
aa
xayaz
```
### 样例输出 #2
```
aa
```
## 样例 #3
### 样例输入 #3
```
a
z
```
### 样例输出 #3
```
```
## 样例 #4
### 样例输入 #4
```
abracadabra
avadakedavra
```
### 样例输出 #4
```
aaadara
```
## 提示
### 注釈
文字列 $ x $ の*部分列*とは、$ x $ から $ 0 $ 個以上の文字を取り除いた後、残りの文字を元の順序で連結して得られる文字列のことです。
### 制約
- $ s $ および $ t $ は英小文字からなる文字列である。
- $ 1\ \leq\ |s|,\ |t|\ \leq\ 3000 $
### Sample Explanation 1
答えは `axb` または `ayb` です。 どちらを出力しても正解となります。
### Sample Explanation 3
答えは `` (空文字列) です。
思路:
递归方程f(a,b)=f(a-1,b-1)+1(如果第a个字符和第b个字符相同)
否则f(a,b)=max(f(a-1,b),f(a,b-1))
本题思路主要卡在了如何保存并输出结果
思考(看题解)之后才发现
可以设 s 长度为 l1,t 长度为 l2。
所以在求解完数量后,可以按照刚才的过程,从 dp[l1][l2]开始逆向转移。
在遇到每一个 s[i] = t[i]s[i]=t[i] 时,记录当前字符,最后反向输出即可。
#include <iostream>
using namespace std;
const int kMaxL = 3001;
string s1, s2;
int dp[kMaxL][kMaxL];
char ans[kMaxL];
int l1, l2, num;
int main() {
cin >> s1 >> s2;
l1 = s1.size(), l2 = s2.size();
for (int i = 1; i <= l1; i++) { // 求解字符数
for (int j = 1; j <= l2; j++) {
if (s1[i - 1] == s2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
num = dp[l1][l2];
for (int i = l1, j = l2; num;) { // 反向转移
if (s1[i - 1] == s2[j - 1]) {
ans[num--] = s1[--i]; // 记录最长公共子序列
--j;
} else if (dp[i][j] == dp[i - 1][j]) {
i--;
} else if (dp[i][j] == dp[i][j - 1]) {
j--;
}
}
for (int i = 1; i <= dp[l1][l2]; i++) {
cout << ans[i];
}
return 0;
}