POJ 3922 A simple stone game(K倍减法游戏)(*)

转载于:http://www.cnblogs.com/jianglangcaijin/archive/2012/12/19/2825539.html

题意:两人取一堆石子,石子有n个。 先手第一次不能全部取完但是至少取一个。之后每人取的个数不能超过另一个人上一次取的数的K倍。拿到最后一颗石子的赢。先手是否有必胜策略?若有,先手第一步最少取几个?

思路:

(1)首先k=1的时候,必败态是2^i,因为我们把数二进制分解后,拿掉二进制的最后一个1,那么对方必然不能拿走倒数第二位的1,因为他不能拿的比你多。你只要按照这个策略对方一直都不可能拿完。所以你就会赢。

(2)k=2的时候,必败态是斐波那契数列。因为任何一个整数n都可以写成若干项不相邻的斐波那契数的和,所以我们拿掉1,对方永远取不完再高位的1。因为斐波那契数列两项f[i]和f[i+2]满足f[i+2]>2*f[i]。比如设斐波那契数列为1,2,3,5,8,13……12=8+3+1,化成二进制就好比是10101,那么你拿走最右边的1(其实就是1),那么对方不可能拿走第三位的1(这个1其实是3),这样就和 k=1一个道理,对方不可能拿完,所以你就能拿完;
(3)k>=3的时候,我们必须构造数列,将n写成数列中一些项的和,使得这些被取到的项的相邻两个倍数差距>k 那么每次去掉最后一个1 还是符合上面的条件。设这个数列已经被构造了i 项,第i项为a[i],前i项可以完美对1到b[i] 编码使得每个编码的任意两项倍数>K 那么有a[i+1]=b[i]+1;这是显然的。因为b[i]+1没法构造出来。只能新建一项表示。然后计算b[i+1]。 既然要使用 a[i+1] 那么下一项最多只能是某个a[t] 使得 a[t]*K<a[i+1] ,于是b[i+1]=b[t]+a[i+1]。

最后判断n是否在数列a里面。如果在,那么先手必败。否则不停的减掉数列a中的项构造出n的分解,最后一位就是了。


const int MAX=2000000;
int a[MAX],b[MAX],n,m,C,num=0;

int main()
{
    for(scanf("%d",&C);C--;)
    {
        scanf("%d%d",&n,&m);
        a[0]=b[0]=1;
        int i=0,j=0;
        while(a[i]<n)
        {
            i++;
            a[i]=b[i-1]+1;
            while(a[j+1]*m<a[i]) j++;
            if(a[j]*m<a[i]) b[i]=b[j]+a[i];
            else b[i]=a[i];
        }
        printf("Case %d: ",++num);
        if(a[i]==n)
        {
            puts("lose");
            continue;
        }
        int ans;
        while(n)
        {
            if(n>=a[i]) n-=a[i],ans=a[i];
            i--;
        }
        printf("%d\n",ans);
    }
    return 0;
}


这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值