2016 ACM/ICPC Asia Regional Shenyang Online HDU 5895 Mathematician QSC(矩阵快速幂+高次幂取模)★ ★

本文介绍了一个数学问题的解决方法,该问题涉及矩阵快速幂和欧拉函数的应用。通过查找OEIS找到了g(n)与f(n)的关系,并利用矩阵快速幂计算f(n),同时应用了x^n%k=x^(n%phi(k)+phi(k))%k这一性质来简化计算过程。
摘要由CSDN通过智能技术生成

题意:已知f(n)=2*f(n-1)+f(n-2), g(n)=∑f(i)²(0<=i<=n), 给出n,x,y,s, 求x^(g(n*y))%(s+1);

思路:OEIS查到了g(n)=f(n)*f(n+1)/2, f(n)可以用矩阵快速幂求得, 有一个定理可以用于高次幂取模 x^n %k=x^(n%phi(k)+phi(k)) %k, 此处phi(x)为欧拉函数,但是在对幂次取模时存在一个除2,

又因为(a/b)%k=(a%bk)/b,所以这个问题得以解决(这个方法和逆元有点分不清, 还得好好看看).


#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
LL n,x,y,s1,S;
LL euler(LL n){
    LL res=n, a=n;
    for(LL i=2;i*i<=n;i++){
        if(a%i==0){
            res=res/i*(i-1);
            while(a%i==0) a/=i;
        }
    }
    if(a>1) res=res/a*(a-1);
    return res;
}
LL pow_mod(LL a,LL n){
    LL t=a, res=1;
    while(n){
        if(n&1) res=(res*t)%(S+1);
        n/=2;
        t=(t*t)%(S+1);
    }
    return res;
}
struct Mat{
    LL a[2][2];
    void init(){
        a[0][0]=2;
        a[1][0]=a[0][1]=1;
        a[1][1]=0;
    }
};
Mat operator *(Mat a,Mat b){
    Mat c;
    for(LL i=0;i<2;i++)
    for(LL j=0;j<2;j++){
        c.a[i][j]=0;
        for(LL k=0;k<2;k++)
            c.a[i][j]+=a.a[i][k]*b.a[k][j];
        c.a[i][j]=c.a[i][j]%s1;
    }
    return c;
}
Mat operator ^(Mat p,LL k){
    Mat ans; ans.init();
    while(k){
        if(k&1)
            ans=ans*p;
        k/=2;
        p=p*p;
    }
    return ans;
}
int main(){
    LL t; cin>>t;
    while(t--){
        cin>>n>>y>>x>>S;
        s1=2*euler(S+1);
        if(n==-1) break;
        if(n==0){
            cout<<1<<endl;
            continue;
        }
        Mat s; s.init();
        s=s^(n*y-1);
        LL u=(s.a[0][0]*s.a[1][0]);
        u=(u%s1+s1)/2;
        LL ans=pow_mod(x,u);
        cout<<ans<<endl;
    }

    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值