题意:有n个题目。把n个题目分成2个部分,div1和div2,并且div1的题目难度要大于div2.题目标号即为题目难度. 即:题目1的难度为1 。。。 现在有m条关系, 即u,v不能再同一个div里。并且每个div里不能为空,问有多少种方案满足要求。 不存在输出0
思路:由于每一条关系u,v不能在同一个div,那么我们可以肯定一个在div1,一个在div2, 发现把难度小的放在div2,难度大的放在div1这样之后的扩展性会比较好。因为div1难度要大于div2,那么我们可以记录div2的最难的题目和div1最简单的题目。 然后根据m个关系判断是否存在合理的分配。 然后把没有约束的题目难度小于maxdiv2的都要放在div2,难度大于mindiv1的都要放在div1,剩下的就可以随意分配了。假设剩下k题可以随意分配,那么就有k+1种分配方案。 注意下每个div不能为空。如果div2为空,就把第一题给div2[最简单的题], 如果div1为空,就把最后一个给div1[最难的题].
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define L(i) i<<1
#define R(i) i<<1|1
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-9
#define maxn 1000010
#define MOD 1000000007
int n,m;
int vis[maxn];
int main()
{
int t,C = 1;
//scanf("%d",&t);
while(scanf("%d%d",&n,&m) != EOF)
{
int flag = 0;
int ans = 0,mx = -1,mi = INF;
memset(vis,0,sizeof(vis));
for(int i = 0; i < m; i++)
{
int u,v;
scanf("%d%d",&u,&v);
if(u > v)
swap(u,v);
if(vis[u] == 2 || vis[v] == 1 || mx > mi)
flag = 1;
if(!flag)
{
vis[u] = 1;
vis[v] = 2;
mx = max(mx,u);
mi = min(mi,v);
}
}
if(flag || mx > mi)
{
printf("0\n");
continue;
}
if(mx == -1)
{
mx = 1;
vis[1] = 1;
}
if(mi == INF)
{
mi = n;
vis[n] = 2;
}
for(int i = 1; i <= n; i++)
if(vis[i] == 0 && i > mx && i < mi)
ans++;
printf("%d\n",ans+1);
}
return 0;
}