题意:给你n*m的矩阵,有k条链,两种操作,你可以每次修改一条链的值,使之变为0或者恢复原来的值,或者查询一个子矩阵的权值和
思路:n,m,k只有2000,并且留意到题目说查询权值和的操作最多只有2000次,那么就可以不用每次修改的时候就马上修改,而是选择给它一个标记,到了询问的时候再遍历一次所有链来修改,有点类似线段树的lazy标志一样,查询子矩阵的权值和显然的做法就是用一个二维树状数组,这样复杂度大概是2000*2000*log(2000)*log(2000),大概2*1e8就可以跑过去了
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define L(i) i<<1
#define R(i) i<<1|1
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-9
#define maxn 1000100
#define MOD 1000000007
struct node
{
int x,y;
long long w;
}st;
int n,m,k;
int pre[2020],flag[2020];
long long c[2020][2020];
vector<node> tmp[2020];
void update(int x,int y,long long val)
{
for(int i = x; i < 2020; i += i&(-i))
for(int j = y; j < 2020; j += j&(-j))
c[i][j] += val;
}
long long get_sum(int x,int y)
{
long long ans = 0;
for(int i = x; i > 0; i -= i&(-i))
for(int j = y; j > 0; j -= j&(-j))
ans += c[i][j];
return ans;
}
int main()
{
int t;
//scanf("%d",&t);
while(scanf("%d%d%d",&n,&m,&k) != EOF)
{
memset(c,0,sizeof(c));
for(int i = 0; i < k; i++)
{
int x;
scanf("%d",&x);
tmp[i].clear();
while(x--)
{
scanf("%d%d%lld",&st.x,&st.y,&st.w);
tmp[i].push_back(st);
}
pre[i] = 0;
flag[i] = 1;
}
int q;
scanf("%d",&q);
while(q--)
{
char s[20];
scanf("%s",s);
if(s[0] == 'S')
{
int x;
scanf("%d",&x);
flag[x-1] ^= 1;
}
else
{
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
for(int i = 0; i < k; i++)
{
if(pre[i] == flag[i])
continue;
for(int j = 0; j < tmp[i].size(); j++)
{
update(tmp[i][j].x,tmp[i][j].y,(!flag[i]?-1:1)*tmp[i][j].w);
pre[i] = flag[i];
}
}
printf("%lld\n",get_sum(x2,y2)-get_sum(x1-1,y2)-get_sum(x2,y1-1)+get_sum(x1-1,y1-1));
}
}
}
return 0;
}