判断点在多边形内 射线法详解

问题描述

现有一个点p(x0,y0),多变形ptPolypon,判断点p是否在多边形内。

算法

判断一个点是否在多边形内,我们可以从该点引出一条水平射线(任意射线都可,但水平便于计算),观察射线与多变形的交点个数,如果交点个数为奇数,则该点在多边形内,如果为 偶数 则在多边形外。

如图 点在多边形内,从该点做一条水平射线,与多边形交点个数为2*n+1 为奇数,同理若点在多变形外为偶数。
1752013-20190728190721798-421785818.png

如何判断水平射线与多变形的边有交点呢?
显然,如果某条边是水平的,那么肯定没有交点
if (p1.y == p2.y) continue;

如果点p的纵坐标比多边形某边的纵坐标都小或都大,那么他们的交点一定在延长线上,如图所示
1752013-20190728213636166-1207574637.png

if (p.y < min(p1.y, p2.y))
            continue;
if (p.y >= max(p1.y, p2.y))
            continue;

接下来我们考虑一般情况。要想判断有没有交点,我们只需要将多边形某边所在直线的方程求出,将p点的纵坐标y0带入,即可求得交点横坐标x,将x与x0比较,如果下x0<x,该点在多边形内反之在多边形外。
公式为:

\[x = (y0- p1.y)*(p2.x - p1.x)/ (p2.y - p1.y)+ x0\]

1752013-20190728220050138-291291117.png

完整代码

struct Point
{
    double x, y;
};
bool IsInPolygon(Point p,Point *ptPolygon,int ncount)
{
    int ncross = 0;
    for (int i = 0; i < ncount; i++)
    {
        Point p1 = ptPolygon[i];
        Point p2 = ptPolygon[(i + 1) % ncount]; //相邻两条边p1,p2
        if (p1.y == p2.y)         
            continue;
        if (p.y < min(p1.y, p2.y))
            continue;
        if (p.y >= max(p1.y, p2.y))
            continue;
        double x = (p.y - p1.y)*(p2.x - p1.x) / (p2.y - p1.y) + p1.x;
        if (x > p.x)
            ncross++; //只统计单边交点
    }
    return(ncross % 2 == 1);
}

转载于:https://www.cnblogs.com/muyefeiwu/p/11260366.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值