判断点在多边形内(射线法)

射线法,用来判断点在多边形的内外,适用于任意多边形
时间复杂度:O(n)
从该点引出一条水平射线,观察射线与多变形的交点个数.
当射线与多边形的交点个数是奇数时,P在多边形内; 偶数时,P在多边形外。

我们通常将射线设为水平向右(哪个方向都可以,只是水平容易写一点而已)

在这里插入图片描述
图一这种情况计两次或者不计都可
图二这种情况只计一次
图三这种情况也是计两次或者不计都可

最后,根据点数判断点P在多边形内外。

注意:点必须有顺序,顺时针或逆时针
代码:
你品,你仔细品(逃

const double EPS=1e-9;
inline int sgn(double a){ return a < -EPS ? -1 : a > EPS; }
inline int cmp(double a, double b){ return sgn(a-b); }
struct Point;
struct Line;
typedef Point Vector;
struct Point{
    double x,y;
    Point(){}
    Point(double a, double b):x(a),y(b){}
    double len(){return sqrt(x*x+y*y);}
    bool onSegment(Line l);
    int inPolygon(Point poly[]);
    void read(){scanf("%lf%lf",&x,&y);}
    Point operator+(Vector v){return {x+v.x,y+v.y};}
    Vector operator-(Point p){return {x-p.x,y-p.y};}
    double operator^(Vector v){return x*v.y-y*v.x;}//叉乘
    double operator*(Vector v){return x*v.x+y*v.y;}//点乘
};
bool Point::onSegment(Line l){
    Vector v1=l.s-*this;
    Vector v2=l.e-*this;
    return sgn(v1^v2)==0&&sgn(v1*v2)<=0;
}
int Point::inPolygon(Point poly[]){//判断点是否在多边形内,若点在多边形内返回1,在多边形外部返回0,在多边形上返回-1
    int wn = 0;
    for(int i = 1; i <= n; ++i){
        if(onSegment({poly[i], poly[i%n+1]})) return -1;
        int k = sgn((poly[i%n+1] - poly[i])^(*this - poly[i]));
        int d1 = sgn(poly[i].y - y);
        int d2 = sgn(poly[i%n+1].y - y);
        if(k > 0 && d1 <= 0 && d2 > 0) wn++;
        if(k < 0 && d2 <= 0 && d1 > 0) wn++;
    }
    return wn%2;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值