【算法】图上两点间的最短路径

本文深入探讨图上两点间的最短路径算法,包括Dijkstra(堆优化版)、Bellman-Ford、SPFA及其负环检测以及Floyd多源最短路算法。适合算法复习和进阶学习。
摘要由CSDN通过智能技术生成

{自己复习用,不考虑读者看不懂的情况} 

假设图中有n个点m条边 

Dijkstra算法

算法步骤:

1、首先将除了起点的每个点与起点的距离初始为无穷大

2、循环n - 1 次,每次选出一个距离最小的点,将其状态更新为visited,然后更新其他所有点与起点距离

#include <iostream>
#include <cstring>
using namespace std;

const int N = 510, INF = 0x3f3f3f3f;

int n, m;
int g[N][N];
int dist[N];
bool st[N];

void dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for(int i = 0; i < n - 1; i++)
    {
        int t = -1;
        for(int j = 1; j <= n; j++)
        {
            if(!st[j] && (t == -1 || dist[j] < dist[t])) t = j;
        }

        if(t == n) return;
        st[t] = true;

        for(int j = 1; j <= n; j++)
        {
            dist[j] = min(dist[j], dist[t] + g[t][j]);
        }
    }

    "missing u";
}


int main()
{
    scanf("%d%d", &n, &m);
    memset(g, 0x3f, sizeof g);

    for(int i = 0; i < m; i++)
    {
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        g[x][y] = min(g[x][y], z);
    }

    dijkstra();

    if(dist[n] == INF) puts("-1");
    else printf("%d\n", dist[n]);
    return 0;
}

Dijkstra算法(堆优化版)

 维护一个优先级队列,每次弹出堆顶,修改其状态为visited,然后更新其邻居节点距离,若有节点距离发生变化,将其入堆。

#include <iostr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值