ubuntu 18.04 Nvidia Rtx 2060 Driver+cudnn+cuda

1.显卡驱动470

参考:https://blog.csdn.net/weixin_41281151/article/details/121590003

2.安装cuda10.0

(下载链接https://developer.nvidia.com/cuda-toolkit-archive,对比关系图https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html)

1)sudo chmod a+x cuda_xxxxx_linux.run

2)sudo sh cuda_xxxxx_linux.run

中间再安装显卡驱动时,要NO,其他都是YES或者default

3)成功后,修改配置文件sudo vim ~/.bashrc

4)添加语句并保存:

export PATH=/usr/local/cuda/binKaTeX parse error: Expected '}', got 'EOF' at end of input: {PATH:+:{PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64KaTeX parse error: Expected '}', got 'EOF' at end of input: …LIBRARY_PATH:+:{LD_LIBRARY_PATH}}

或者可以为:

export PATH=/usr/local/cuda-10.0/binKaTeX parse error: Expected '}', got 'EOF' at end of input: {PATH:+:{PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64KaTeX parse error: Expected '}', got 'EOF' at end of input: …LIBRARY_PATH:+:{LD_LIBRARY_PATH}}

5)source ~/.bashrc

测试:

cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
sudo make
sudo ./deviceQuery

或者:nvcc–version

连接:sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda

3.cudnn7.6.1

(下载链接https://developer.nvidia.com/rdp/cudnn-download)

1)解压tar zxvf FileName.tgz

2)将文件倒入相关内容中

sudo cp cudnn.h /usr/local/cuda/include/

sudo cp lib* /usr/local/cuda/lib64/

3)动态文件进行链接

cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.7 #删除原有动态文件
sudo ln -s libcudnn.so.7.6.1 libcudnn.so.7 #生成软衔接
sudo ln -s libcudnn.so.7 libcudnn.so #生成软链接

4.安装pip,进行安装其他依赖库

sudo apt-get install python3-pip

之后pip install opencv-python numpy scipy sklearn

5.安装tensorflow-gpu

首先确认自己安装的版本,因为相互之间的对应关系https://tensorflow.google.cn/install/source#linux

pip install tensorflow-gpu或者pip install tensorflow-gpu==1.31.1 (高版本貌似会报错)

pip install keras

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值