1.显卡驱动470
参考:https://blog.csdn.net/weixin_41281151/article/details/121590003
2.安装cuda10.0
(下载链接https://developer.nvidia.com/cuda-toolkit-archive,对比关系图https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html)
1)sudo chmod a+x cuda_xxxxx_linux.run
2)sudo sh cuda_xxxxx_linux.run
中间再安装显卡驱动时,要NO,其他都是YES或者default
3)成功后,修改配置文件sudo vim ~/.bashrc
4)添加语句并保存:
export PATH=/usr/local/cuda/binKaTeX parse error: Expected '}', got 'EOF' at end of input: {PATH:+:{PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64KaTeX parse error: Expected '}', got 'EOF' at end of input: …LIBRARY_PATH:+:{LD_LIBRARY_PATH}}
或者可以为:
export PATH=/usr/local/cuda-10.0/binKaTeX parse error: Expected '}', got 'EOF' at end of input: {PATH:+:{PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64KaTeX parse error: Expected '}', got 'EOF' at end of input: …LIBRARY_PATH:+:{LD_LIBRARY_PATH}}
5)source ~/.bashrc
测试:
cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
sudo make
sudo ./deviceQuery
或者:nvcc–version
连接:sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda
3.cudnn7.6.1
(下载链接https://developer.nvidia.com/rdp/cudnn-download)
1)解压tar zxvf FileName.tgz
2)将文件倒入相关内容中
sudo cp cudnn.h /usr/local/cuda/include/
sudo cp lib* /usr/local/cuda/lib64/
3)动态文件进行链接
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.7 #删除原有动态文件
sudo ln -s libcudnn.so.7.6.1 libcudnn.so.7 #生成软衔接
sudo ln -s libcudnn.so.7 libcudnn.so #生成软链接
4.安装pip,进行安装其他依赖库
sudo apt-get install python3-pip
之后pip install opencv-python numpy scipy sklearn
5.安装tensorflow-gpu
首先确认自己安装的版本,因为相互之间的对应关系https://tensorflow.google.cn/install/source#linux
pip install tensorflow-gpu或者pip install tensorflow-gpu==1.31.1 (高版本貌似会报错)
pip install keras