数学表达式day2

二元关系

4.6 作业

  1. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 写出 A \mathbf{A} A 上的 “模 2 同余” 关系及相应的划分.
  2. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 自己给定两个关系 R 1 \mathbf{R}_1 R1
    R 2 \mathbf{R}_2 R2, 并计算 R 1 R 2 \mathbf{R}_1 \mathbf{R}_2 R1R2, R 1 + \mathbf{R}_1^+ R1+, R 1 ∗ \mathbf{R}_1^* R1 .
  3. 查阅粗糙集上下近似的定义并大致描述.
  1. R = { ( a , b ) ∈ A × A ∣ a m o d    2 = b m o d    2 } = { ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 5 , 9 ) } \mathbf{R} = \{(a, b) \in \mathbb{A} \times \mathbb{A} \vert a \mod 2 = b \mod 2\} = \{(1, 5), (1, 9), {(2, 8), (5, 9)}\} R={(a,b)A×Aamod2=bmod2}={(1,5),(1,9),(2,8),(5,9)}.
    等价关系导致的对原集合的划分如下: P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P} = \{\{1, 5, 9\},\{2, 8\}\} P={{1,5,9},{2,8}}.
  2. 给定 A \mathbf{A} A上的关系 R 1 = { ( 1 , 5 ) , ( 1 , 2 ) , ( 2 , 9 ) } \mathbf{R}_1 = \{(1, 5), (1, 2), (2, 9)\} R1={(1,5),(1,2),(2,9)}, R 2 = { ( 2 , 8 ) , ( 5 , 8 ) , ( 5 , 9 ) } \mathbf{R}_2 = \{(2, 8), (5, 8), (5, 9)\} R2={(2,8),(5,8),(5,9)}. 则:
    1). R 2 ∘ R 1 = { ( 1 , 8 ) , ( 1 , 9 ) } \mathbf{R}_2 \circ \mathbf{R}_1 = \{(1, 8), (1, 9)\} R2R1={(1,8),(1,9)}, 且 R 1 ∘ R 2 = ∅ \mathbf{R}_1 \circ \mathbf{R}_2 = \emptyset R1R2=, 所以 R 1 ∘ R 2 ≠ R 2 ∘ R 1 \mathbf{R}_1 \circ \mathbf{R}_2 \neq \mathbf{R}_2 \circ \mathbf{R}_1 R1R2=R2R1, 故二元关系的运算不满足交换律.
    2). ∣ A ∣ = 5 \vert \mathbf{A} \vert = 5 A=5, 则 R 1 + = ⋃ i = 1 ∣ A ∣ R 1 i = ⋃ i = 1 5 R 1 i = R 1 ∪ R 1 ∘ R 1 ∪ R 1 ∘ R 1 ∘ R 1 ∪ R 1 ∘ R 1 ∘ R 1 ∘ R 1 ∪ R 1 ∘ R 1 ∘ R 1 ∘ R 1 ∘ R 1 = { ( 1 , 5 ) , ( 1 , 2 ) , ( 2 , 9 ) } ∪ { ( 1 , 9 ) } ∪ ∅ ∪ ∅ ∪ ∅ = { ( 1 , 5 ) , ( 1 , 2 ) , ( 2 , 9 ) , ( 1 , 9 ) } \mathbf{R}_1^+ = \bigcup_{i=1}^{\vert \mathbf{A} \vert} \mathbf{R}_1^i = \bigcup_{i=1}^5 \mathbf{R}_1^i = \mathbf{R}_1 \cup \mathbf{R}_1 \circ \mathbf{R}_1 \cup \mathbf{R}_1 \circ \mathbf{R}_1 \circ \mathbf{R}_1 \cup \mathbf{R}_1 \circ \mathbf{R}_1 \circ \mathbf{R}_1 \circ \mathbf{R}_1 \cup \mathbf{R}_1 \circ \mathbf{R}_1 \circ \mathbf{R}_1 \circ \mathbf{R}_1 \circ \mathbf{R}_1 = \{(1, 5), (1, 2), (2, 9)\} \cup \{(1, 9)\} \cup \emptyset \cup \emptyset \cup \emptyset = \{(1, 5), (1, 2), (2, 9), (1, 9)\} R1+=i=1AR1i=i=15R1i=R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1={(1,5),(1,2),(2,9)}{(1,9)}={(1,5),(1,2),(2,9),(1,9)}.
    3). 由于 R 0 = { ( x , x ) ∣ x ∈ R } = { ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R}^0 = \{(x, x) \vert x \in \mathbf{R} \} = \{(1, 1), (2, 2), (5, 5), (8, 8), (9, 9)\} R0={(x,x)xR}={(1,1),(2,2),(5,5),(8,8),(9,9)}, R 1 ∗ = R 1 + ∪ R 0 = { ( 1 , 5 ) , ( 1 , 2 ) , ( 2 , 9 ) , ( 1 , 9 ) } ∪ { ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } = { ( 1 , 5 ) , ( 1 , 2 ) , ( 2 , 9 ) , ( 1 , 9 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R}_1^* = \mathbf{R}_1^+ \cup \mathbf{R}^0 = \{(1, 5), (1, 2), (2, 9), (1, 9)\} \cup \{(1, 1), (2, 2), (5, 5), (8, 8), (9, 9)\} = \{(1, 5), (1, 2), (2, 9), (1, 9), (1, 1), (2, 2), (5, 5), (8, 8), (9, 9)\} R1=R1+R0={(1,5),(1,2),(2,9),(1,9)}{(1,1),(2,2),(5,5),(8,8),(9,9)}={(1,5),(1,2),(2,9),(1,9),(1,1),(2,2),(5,5),(8,8),(9,9)}
  3. 根据已知信息判断对象a是否属于集合 X \mathbf{X} X,有三种情况: a a a 一定属于 X \mathbf{X} X: a ∈ X a \in \mathbf{X} aX a a a 可能属于 X \mathbf{X} X 也可能不属于 X \mathbf{X} X: a ∈ X / a ∉ X a \in \mathbf{X} / a \notin \mathbf{X} aX/a/X a a a 一定不属于 X \mathbf{X} X: a ∉ X a \notin \mathbf{X} a/X。于是在RS中,引入两个概念:一个是下近似集,另一个是上近似集。
    下近似集是指当一个集合不能利用有效的等价关系被恰当的分类时,则可通过另外的集合来达到这个集合的近似。形式上,设 U \mathbf{U} U是一个非空集, X ⊆ U \mathbf{X} \subseteq \mathbf{U} XU是任一子集, R \mathbf{R} R U \mathbf{U} U上的等价关系,则
    下近似集: R ‾ ( X ) = { x ∈ U ∣ R ⊆ X } \underline \mathbf{R} (\mathbf{X}) = \{x \in \mathbf{U} \vert \mathbf{R} \subseteq \mathbf{X}\} R(X)={xURX}上近似集: R ‾ ( X ) = { x ∈ U ∣ R ∩ X ≠ ∅ } \overline \mathbf{R} (\mathbf{X}) = \{x \in \mathbf{U} \vert \mathbf{R} \cap \mathbf{X} \neq \emptyset\} R(X)={xURX=}.
    综上,其实下近似集可以被理解为所有那些被包含在 X \mathbf{X} X里面的等价关系的并集(包含在 X \mathbf{X} X内的最大可定义集),上近似集被理解为那些与 X \mathbf{X} X有交集的等价关系的并集(包含X的最小可定义集)。

函数

5.5 作业 举例说明你对函数的认识.

关于函数的话以早期的知识积累来说:

  1. 函数一定有定义域,有值域,要满足映射关系,且定义域与值域通过映射关系满足一一对应。特别的是,定义域多个值可以对应于值域的一个值,反之不成立。

更新以后就是:

  1. 关于函数的二元关系,我粗略的理解为这是指两个集合之间的关系,具体举例来说的话,例如: A \mathbf{A} A为一个非空集合, 2 ∣ A ∣ 2^{\vert \mathbf{A} \vert} 2A A \mathbf{A} A 的幂集,那么 ∃ x ∈ A × 2 ∣ A ∣ \exists x \in \mathbf{A} \times 2^{\vert \mathbf{A} \vert} xA×2A. x x x A × 2 ∣ A ∣ \mathbf{A} \times 2^{\vert \mathbf{A} \vert} A×2A 间的 ∈ \in 关系,即为一种二元关系,构成了 A \mathbf{A} A 2 ∣ A ∣ 2^{\vert \mathbf{A} \vert} 2A 两个集合之间的连接关系。
  2. 定义域与值域都可以是笛卡尔积的形式。
  3. 将函数应用在机器学习里,主要是主动学习这一块,就是把条件属性和标签作为输入和输出,函数关系在训练中得到,先学习已知的数据,再将训练得到的函数关系测试未知数据得到输出大致结果。机器学习就是输出准确率这一块下功夫,到底该设置怎样的条件属性作为特征才能得到更精确的结果。

向量/矩阵的范数

6.5 作业 自己给定一个矩阵并计算其各种范数.

假设 ∃ A = [ 1 0 3 2 1 0 0 1 1 ] \exist \mathbf{A} = \left[ \begin{matrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{matrix}\right] A=120011301 其各范数为:
l 0 l_0 l0范数: ∥ X ∥ 0 = ∣ { ( i , j ) ∣ x i j ≠ 0 } ∣ = 6 \|\mathbf{X}\|_0 = \vert\{ (i, j)\vert x_{ij} \neq 0 \} \vert = 6 X0={(i,j)xij=0}=6
l 1 l_1 l1范数: ∥ X ∥ 1 = ∑ i , j ∣ x i j ∣ = 1 + 3 + 2 + 1 + 1 + 1 = 9 \|\mathbf{X}\|_1 = \sum_{i, j} \vert x_{ij} \vert = 1 + 3 + 2 + 1 + 1 + 1 = 9 X1=i,jxij=1+3+2+1+1+1=9
l 2 l_2 l2范数: ∥ X ∥ 2 = ∑ i , j x i j 2 = 1 2 + 3 2 + 2 2 + 1 2 + 1 2 + 1 2 = 17 \|\mathbf{X}\|_2 = \sqrt{\sum_{i, j} x^2_{ij}} = \sqrt{ 1^2 + 3^2 + 2^2 + 1^2 + 1^2 + 1^2} = \sqrt{17} X2=i,jxij2 =12+32+22+12+12+12 =17
l ∞ l_{\infty} l范数: ∥ X ∥ ∞ = max ⁡ i , j ∣ x i j ∣ = 3 \|\mathbf{X}\|_{\infty} = \max_{i, j} \vert x_{ij} \vert = 3 X=i,jmaxxij=3

min与argmin

7.3 作业 解释 推荐系统: 问题、算法与研究思路 2.1 中的优化目标 min ⁡ ∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) 2 \min \sum _{(i, j) \in \Omega} (f(\mathbf{x}_i, \mathbf{t}_j) - r_{ij})^2 min(i,j)Ω(f(xi,tj)rij)2各符号及含义.

Ω \Omega Ω为对象集合。
x i x_i xi 表示用户信息表 X \mathbf{X} X 中的某个元素,即一个用户信息。
t j t_j tj 表示商品信息表 T \mathbf{T} T 中的某个元素,即一个商品信息。
f f f 表示用户信息表 X \mathbf{X} X 与商品信息表 T \mathbf{T} T 之间的一个对应关系,根据用户属性与商品属性的评分矩阵的笛卡尔积得到一个预测商品推荐评分矩阵。可以由学习得到,后期可以用来测试推荐指数。
r i j r_{ij} rij 也是一个是否推荐的参数。如果仅知道用户是否浏览过商品, r i j r_{ij} rij 的取值范围为 { 0 , 1 } \{0, 1\} {0,1}, r i j = 0 r_{ij} = 0 rij=0 表示浏览过, r i j r_{ij} rij 表示未浏览过. 如果用户要给购买的商品过分, r i j r_{ij} rij 的取值范围一般为 { 0 , 1 , 2 , 3 , 4 , 5 } \{0, 1, 2, 3, 4, 5\} {0,1,2,3,4,5}. r i j = 0 r_{ij} = 0 rij=0 表示没购买, 1 分表示最不喜欢, 5 分表示最喜欢, 该评分为显示评分 (explicit rating).
∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) 2 \sum _{(i, j) \in \Omega} (f(\mathbf{x}_i, \mathbf{t}_j) - r_{ij})^2 (i,j)Ω(f(xi,tj)rij)2 这个式子是在用 f ( x i , t j ) f(\mathbf{x}_i, \mathbf{t}_j) f(xi,tj) 这个预测值与 实际评分 r i j r_{ij} rij 做差再求平方和,其实是一个平方误差的计算,一般作为损失函数)。试图得到较小预测误差,。
min ⁡ \min min 最后获得集合中的最小值,即最小误差。最小误差也就是说可以更加准确地预测用户对商品的喜爱程度,从而进行推荐,达到优化的目的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值