windows基于MediaPipe 和 TensorFlow.js的3D手势检测、人脸检测、身体检测

目录

流程总结

第一步:安装 Node.js 和 Yarn

1.安装 Node.js:

1.1 如果安装了其他版本不合适,可以安装调整nvm-setup.exe来调整

2.安装 Yarn:

第二步:克隆项目仓库

第三步:替换共享文件

1.删除旧的共享文件夹:

1.1 删除tfjs-models\hand-pose-detection\src的shared

1.2 tfjs-models\hand-pose-detection\demos\live_video\src的shared

2.复制新的共享文件夹:

1.2 复制tfjs-models下的shared到tfjs-models\hand-pose-detection\src和 tfjs-models\hand-pose-detection\demos\live_video\src

2.2复制tfjs-models\hand-pose-detection\demos\shared下的文件到 tfjs-models\hand-pose-detection\demos\live_video\src\shared下

第四步:安装依赖并构建项目

1.进入项目目录并删除缓存和旧的 node_modules 文件夹:

2.使用 Yarn 安装项目的依赖项:

3.运行构建:

4.启动项目:


 

流程总结

  1. 安装 Node.js 和 Yarn
  2. 克隆项目代码
  3. 替换项目中的共享文件
  4. 安装依赖和构建项目,然后运行。

 

第一步:安装 Node.js 和 Yarn

1.安装 Node.js

  • Node.js 官方网站 下载适用于 Windows 的安装程序。
  • 安装过程中确保选中 "Add to PATH" 选项。

1.1 如果安装了其他版本不合适,可以安装调整nvm-setup.exe来调整

  • 安装 nvm-windows

  • 安装 Node.js 16 LTS 版本(我测试16版本没有问题):

    nvm install 16

  • 切换到 Node.js 16:

    nvm use 16

2.安装 Yarn

  • 在命令行中通过 npm 安装 Yarn:

    npm install -g yarn

  • 安装完后,运行 yarn -v 来检查 Yarn 是否成功安装。

第二步:克隆项目仓库

使用 git 克隆 TensorFlow.js 的手部姿态识别项目到本地。

git clone https://github.com/tensorflow/tfjs-models.git

第三步:替换共享文件

在 Windows 中,文件操作命令与 Linux/Unix 不同。你可以使用 PowerShell 或者手动替换文件,下面为手动替换。

1.删除旧的共享文件夹:

1.1 删除tfjs-models\hand-pose-detection\src的shared

94e61ef2951948eb9969cd54a9898653.png

1.2 tfjs-models\hand-pose-detection\demos\live_video\src的shared

6d47f8d9dc6a473b846c962bedfae4df.png

2.复制新的共享文件夹

1.2 复制tfjs-models下的shared到tfjs-models\hand-pose-detection\src和 tfjs-models\hand-pose-detection\demos\live_video\src

975e495c0734454ba2f9ce4d95f29d8b.png

f35830280a154fca89e81dda6f4b85ee.png2818c7cbc916480493a00002d639d04a.png

2.2 复制tfjs-models\hand-pose-detection\demos\shared下的文件到 tfjs-models\hand-pose-detection\demos\live_video\src\shared下

b4ea87347dc54494b2dc88217d0be4da.png

ee59dd4e48a048ddb980a49bd1d96dba.png

第四步:安装依赖并构建项目

1.进入项目目录并删除缓存和旧的 node_modules 文件夹:

e9a5c7b63dc749de8b5f9231a50979bb.png

0182904308644034b8d28ce1df3e9b28.png

2.使用 Yarn 安装项目的依赖项:

yarn build-dep

cdb2c3e1ffcf44c0b63b878b83084887.png

3.运行构建:

yarn

e6af4235cd304e42b794c2c18a9c00fb.png

4.启动项目:

yarn watch

d12da18dbf1d45d6ba6a9f4e971dfa82.png

运行之后(初次启动,需要等待),你可以在浏览器中访问 http://localhost:1234/?model=mediapipe_hands,确认手势识别项目是否成功运行。

7ad8825f36a64d0ba831a8d54afc0cec.png

第五步:其它项目

1.face-landmarks-detection

1.1 步骤参考上面的手势

1.2 访问localhost:1234/?model=mediapipe_face_mesh

556235cbbd914b31b7899991c0659b90.png

2.pose-detection

2.1 复制tfjs-models到tfjs-models\pose-detection\src下(注意先删除该目录从下的shared)

d331b11c7a294c469663c09a1353fca4.png

0759846424ae48c989ff55cafbb0ff89.png

2.2访问http://localhost:1234/?model=movenet

5e6cdf3e1ec74302b7c184af54141ceb.png

3. body-segmentation

3.1 步骤参考上面的手势

3.2 http://localhost:1234/?model=selfie_segmentation

0d762fe2a79644b0b553c07784aeb329.png

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值