云水木石

有木石心 具云水趣

从人工智能鉴黄模型,尝试TensorRT优化

随着互联网的快速发展,越来越多的图片和视频出现在网络,特别是UCG产品,激发人们上传图片和视频的热情,比如微信每天上传的图片就高达10亿多张。每个人都可以上传,这就带来监管问题,如果没有内容审核,色情图片和视频就会泛滥。前不久,一向以开放著称的tumblr,就迫于压力,开始限制人们分享色情图片。更...

2019-05-21 09:12:18

阅读数 6

评论数 0

Google Colab上安装TensorRT

NVIDIA TensorRT是一个高性能深度学习推理平台。它包括深度学习推理优化器和运行时,可为深度学习推理应用程序提供低延迟和高吞吐量。推理时,基于TensorRT的应用程序比仅CPU平台的执行速度快40倍。使用TensorRT,您可以优化所有主流框架中训练出的神经网络模型。 简单说,Tens...

2019-05-15 10:35:41

阅读数 16

评论数 0

谷歌GPU云计算平台,免费又好用

最近一直在为深度学习模型训练而苦恼,NVIDIA GTX 960、2G显存,即使是跑迁移学习的模型,也慢的要死,训练过程中电脑还基本上动不了。曾考虑升级显卡,但当时买的是品牌机,可扩展性很差,必须要买一台新的主机。到京东上瞧了一下,RTX 2080 TI显卡的游戏主机,差不多需要两万,更别说那些支...

2019-05-14 21:57:39

阅读数 41

评论数 0

生命不息,折腾不止:Jetson Nano填坑之软件篇

题图:摄于武大凌波门 作为一名每天对着各种裸板的系统工程师,对Jetson Nano会踩到各种坑是做好了充分准备的,本着踩坑填坑的精神,在这里记录一下踩坑经历,供大家一乐。如何避开这些坑?想多了,因为以后你们即使绕开了这些坑,也会有其它的坑等着你:) 重要的是要做到人挡杀人、佛挡杀佛,遇到坑直接趟...

2019-05-06 19:17:01

阅读数 190

评论数 2

生命不息,折腾不止:Jetson Nano上手篇

自从下单Jetson Nano开发套件之后,我就每天刷一刷淘宝,看看卖家是否发货。终于,昨天系统提示卖家已发货,走的顺丰快递,今天就收到货了。盒子比想象中的小: 确实有点简陋,只有一块主板和一张保修卡,连基本的电源都没有提供: Jetson Nano开发套件并不包含Flash存储,需要另配tf...

2019-04-29 19:13:05

阅读数 318

评论数 0

[译] 边缘AI计算新品:NVIDIA Jetson Nano

最近下单了NVIDIA Jetson Nano开发套件,由于国内没有现货,需要过一段时间才能拿到。这几天在收集相关的资料,现翻译一篇介绍NVIDIA Jetson Nano的文章:NVIDIA Jetson Nano, a Raspberry Pi on steroids。原文地址:https:/...

2019-04-29 19:12:18

阅读数 126

评论数 0

不服?来跑个分!

如今,手机厂商发布新品,跑分环节一定是少不了的。就连拍照这种很难量化的指标,也要整出一个DxOMark得分,分出高下。我们对数字是如此迷恋,以至于《小王子》里面就有这样一段话: 如果你对大人们说:“我看到一幢用玫瑰色的砖盖成的漂亮的房子,它的窗户上有天竺葵,屋顶上还有鸽子……”他们怎么也想象不出...

2019-04-25 18:51:44

阅读数 88

评论数 0

浏览器中的机器学习:使用预训练模型

在上一篇文章《浏览器中的手写数字识别》中,讲到在浏览器中训练出一个卷积神经网络模型,用来识别手写数字。值得注意的是,这个训练过程是在浏览器中完成的,使用的是客户端的资源。 虽然TensorFlow.js的愿景是机器学习无处不在,即使是在手机、嵌入式设备上,只要运行有浏览器,都可以训练人工智能模型,...

2019-04-25 18:50:49

阅读数 23

评论数 0

浏览器中的手写数字识别

随着TensorFlow 2.0 alpha的发布,TensorFlow.js更新到首个正式版本1.0,TensorFlow的官网也增加了TensorFlow.js的文档,这说明TensorFlow.js不再是一个试验品。作为一名浏览器内核研发工程师,对TensorFlow.js自然充满了兴趣。 ...

2019-04-08 08:43:53

阅读数 36

评论数 0

[译]标准化Keras:TensorFlow 2.0中的高级API指南

Tensorflow 2.0带来的一个重大变化就是采用keras API作为TensorFlow的标准上层API,因为我在编码中使用到keras比较多,所以对这个变化感到高兴,现翻译一篇Tensorflow团队发布的文档:Standardizing on Keras: Guidance on Hi...

2019-04-02 17:03:41

阅读数 56

评论数 0

[译]写给初学者的Tensorflow介绍 - 2

去年我翻译了一篇文章:写给初学者的Tensorflow介绍,但这只是文章的第一部分,由于原作者迟迟没有写第二部分,我后来就把这件事情忘了。前几天,有朋友留言问为什么没有第二部分的内容,还有朋友热心的给出了第二部分的原文链接。所以在此把第二部分的内容也翻译出来,原文地址:https://medium...

2019-03-27 16:46:06

阅读数 125

评论数 0

[译] 调试神经网络的清单

训练深度学习模型是非常耗时的工作,没有什么比花费了好几天训练而最终结果效果不佳更让人沮丧的了。因此翻译了这篇文章: Checklist for debugging neural networks,希望能给你一点启发,尽早发现模型中的问题。原文地址:https://towardsdatascienc...

2019-03-26 10:16:11

阅读数 26

评论数 0

微架构模型:GoogleNet

在这篇文章中,我们将讨论一种新的网络模型GoogleNet,它和我前面所讨论的模型有所不同,表现在: 移除了全连接层,而采用全局平均池化层(global average pooling)代替,大量减少参数数量,所以相对于AlexNet和VGGNe这种巨型模型,其需要训练的参数少得多,可以节约大量...

2019-03-15 19:44:55

阅读数 1686

评论数 0

[译]高效的TensorFlow 2.0:应用最佳实践以及有什么变化

Tensorflow团队早早就放出了风声,Tensorflow 2.0就快来了,这是一个重要的里程碑版本,重点放在简单和易用性上。我对Tensorflow 2.0的到来充满期待,因此翻译了这篇Tensorflow团队发布的文档:Effective TensorFlow 2.0: Best Prac...

2019-03-11 22:39:04

阅读数 89

评论数 0

试试kaggle竞赛:辨别猫狗

在上一篇文章《深度学习中超大规模数据集的处理》中讲到采用HDF5文件处理大规模数据集。有朋友问到:HDF5文件是一次性读入内存中,然后通过键进行访问吗?答案当然不是,在前面的文章中也提到过,最后生成的train.hdf5文件高达30G,如果全部加载到内存,内存会撑爆。实际上,由于HDF5采用了特殊...

2019-02-26 20:31:21

阅读数 168

评论数 0

深度学习中超大规模数据集的处理

在机器学习项目中,如果使用的是比较小的数据集,数据集的处理上可以非常简单:加载每个单独的图像,对其进行预处理,然后输送给神经网络。但是,对于大规模数据集(例如ImageNet),我们需要创建一次只访问一部分数据集的数据生成器(比如mini batch),然后将小批量数据传递给网络。其实,这种方法在...

2019-02-22 16:43:03

阅读数 884

评论数 0

提高模型准确率:组合模型

各位朋友,新年好! 随着春节假期的结束,想必大家陆陆续续返回工作岗位,开始新的一年的拼搏。我也会继续努力,争取在深度学习方面更进一步,接下来,我将继续聊一聊深度学习在计算机视觉中的应用。 在前面的《站在巨人的肩膀上:迁移学习》和《再谈迁移学习:微调网络》两篇文章中,我们介绍了迁移学习的强大之处。然...

2019-02-13 19:27:03

阅读数 277

评论数 0

再谈迁移学习:微调网络

在《站在巨人的肩膀上:迁移学习》一文中,我们谈到了一种迁移学习方法:将预训练的卷积神经网络作为特征提取器,然后使用一个标准的机器学习分类模型(比如Logistic回归),以所提取的特征进行训练,得到分类器,这个过程相当于用预训练的网络取代上一代的手工特征提取方法。这种迁移学习方法,在较小的数据集(...

2019-01-31 09:45:07

阅读数 276

评论数 0

聊一聊rank-1和rank-5准确度

在我们看来,计算机就是一台严丝合缝、精密运转的机器,严格按照程序员下达的指令工作。虽然产品上线之后经常碰到迷之问题,但我们通常会检讨程序设计得不够完美,而不会认为这是理所当然。因为我们相信只要程序设计严谨,将各种意外情况考虑在内,就会消除这种不确定问题。 然而到了机器学习,特别是深度学习,很多结果...

2019-01-28 17:46:53

阅读数 622

评论数 0

站在巨人的肩膀上:迁移学习

在上一篇文章《使用数据增强技术提升模型泛化能力》中,我们针对训练数据不足的问题,提出采用数据增强(data augmentation)技术,提升模型的准确率。最终结果是:在17flowers数据集上,我们将准确率从60%多增加到70%,取得了不错的效果。然而,对于一个商业应用来说,70%多的准确率...

2019-01-23 20:01:21

阅读数 112

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭