约瑟夫问题Josephus problem

约瑟夫问题:经典算法

已知n个人(以编号1,2,3…n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。

例如:n = 9, k = 1, m = 5
【解答】出局人的顺序为5, 1, 7, 4, 3, 6, 9, 2, 8。


/*************************************************
//约瑟夫环,时间复杂度O(n*m)
**************************************************/
# include <iostream>
using namespace std;

int main()
{
    int n=10, m=2,k=1;//n是人数(编号1,2,……,x),m是出列号,k是起始人编号,在这里定义为1,因为都是从第一个人开始

    int a[10000];
    while(cin>>n)
    {
        if(n==0) break;
        cin>>m;
        //number是已经出列的人数,j用来是报数值即j=1,2···m
        int j=0, number=0;
        for (int i=1;i<=n;i++)
        {
            a[i]=1;
        }

        while (number<n) 
        {
            for (int i=1;i<=n;i++) 
            {
                if (a[i]==1) 
                {
                    j++;
                    if (j==m) //满足出列号
                    {
                        a[i]=0;
                        //格式输出
                        if (number<n-1)
                        {
                            cout<<i<<",";
                        }
                        else
                            cout<<i<<endl;

                        j=0;
                        number++;
                    }
                }
            }//end for i
        }//end while 
    }//end while cin

}

代码出自:http://blog.csdn.net/iamyina/article/details/4126054
还有一种使用循环链表模拟执行流程的解法,请参考:http://blog.csdn.net/eagleest/article/details/8091351


约瑟夫问题:数学推理

本文地址:http://hi.baidu.com/anywei/item/294351b5f432f144ba0e12f2

约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3…n分别表示)围坐在一张圆桌周围;从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。

前几天,在一篇文章中得知了约瑟夫环的问题。然后,就涉及了解决办法。这个问题,在许多计算机或者关于数据结构的书中都有提及,而其中的解决办法便是使用循环链表——无论这个循环链表是使用指针还是数组实现,模拟约瑟夫环的进行,最后得到解决方案。具体方法肯定早有某人披露。但是,令人深感奇妙的还是这个问题的数学解决。在不统计解决过程,即不统计每次都需要出列哪个序号时,就可以应用数学递推公式,直接得出最后剩下的那个人的序号。

使用数学方式,奇妙是很奇妙,也确实让人感受到数学的魅力。可是,在我查找如何推导出这个公式的时候,网上的解决方案都是在我觉得很关键的地方一笔带过。“众所周知”,“显而易见”,“很简单的”……诸如此类。我悲剧的郁闷了。所以在大家都陶醉在“数学真奇妙啊”的飘飘然中时,我惴惴不安。因为我只感受到了数学带给我的困惑。

对着网上的推导思考良久,终于茅塞顿开。所以赶紧写下来,以防以后再次悲剧和郁闷。并且希望以后看到这篇文章的人,能和我一样摆脱困惑。

先总结一下约瑟夫环的递推公式:

f[1]=0; f[i]=(f[i-1]+m)%i; (i>1)
f[1]=1; f[i]=(f[i-1]+m)%i (i>1); if(f[i]==0) f[i]=i;
P(1, m, k)=1 (i = 1); P(i, m, k)=[P(i - 1, m, k ) + m - 1] % i + 1 (i > 1, 此处先减1是为了让模i的值不为0)

那么这三个公式有什么不同?

首先可以肯定的是这三个公式都正确。公式1,得到的是以0~n-1标注的最终序号;公式2,3得到的就是正常的1~n的序号;并且公式2和公式3其实是一个意思。下面我们就分别推导三个公式,并且推导的过程中,你也就能明白这三个公式的共同点和不同点。

公式1的推导:——————————

给出一个序列,从0~n-1编号。其中,k代表出列的序号的下一个,即k-1出列。

a 0, 1, …, k-1, k, k+1, …, n-1

那么,出列的序号是(m-1)%n,k=m%n(这个可真的是显而易见)。出列k-1后,序列变为

b 0, 1, …, k-2, k, k+1, …, n-1

然后,我们继续从n-1后延长这个序列,可以得到

c` 0, 1, …, k-2, k, k+1, …, n-1, n, n+1, …, n+k-2

我们取从k开始直到n+k-2这段序列。其实这段序列可以看作将序列b的0~k-2段移到了b序列的后面。这样,得到一个新的序列

c k, k+1, …, n-1, n, n+1, …, n+k-2

好了,整个序列c都减除一个k,得到

d 0, 1, …, n-2

c序列中的n-1, n, n+1都减除个k是什么?这个不需要关心,反正c序列是连续的,我们知道了头和尾,就能知道d序列是什么样的。

这样你看,从序列a到序列d,就是一个n序列到n-1序列的变化,约瑟夫环可以通过递推来获得最终结果。ok,继续向下。

剩下的就是根据n-1序列递推到n序列。假设在n-1序列中,也就是序列d中,我们知道了最终剩下的一个序号是x,那么如果知道了x转换到序列a中的编号x`,不就是知道了最终的结果了么?

下面我们就开始推导出序列a中x的序号是什么。

d->c,这个变换很容易,就是x+k;

c->b,这个变换是网上大家都一带而过的,也是令我郁闷的一个关键点。从b->c,其实就是0~k-2这段序列转换为n~n+k-2这段序列,那么再翻转回去,简单的就是%n,即(x+k)%n。%n以后,k~n-1这段序列值不会发生变化,而n~n+k-2这段序列则变成了0~k-2;这两段序列合起来,就是序列b。

于是乎,我们就知道了,x=(x+k)%n。并且,k=m%n,所以x=(x+m%n)%n=(x+m)%n。公式1就出来了:f[i]=(f[i-1]+m)%i。当然,i=1就是特殊情况了,f[1]=0。这里还有一个小问题。也许你会迷惑为什么x`=(x+m%n)%n=(x+m)%n中的%n变成公式中f[i]=(f[i-1]+m)%i中的%i?其实这个稍微想想就能明了。我们%n就是为了从序列c转换到序列b——这是在n-1序列转换成n序列时%n;那么从n-2转换到n-1呢?不是要%(n-1)了吗?所以这个值是变量,不是常量。

好了,这个最后需要注意的就是从一开始,我们将n序列从0~n-1编号,所以依据公式1得出的序号是基于0开始的

这样子就有了约瑟夫环的变形:就是一共n个人,查到m的人出圈,求最后圈里的人是几号。

int fun(int n, int m)
{
    int i, r = 0;
    for (i = 2; i <= n; i++)
        r = (r + m) % i;
    return r+1;
}

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。


约瑟夫问题:线段树

本段出自:http://blog.csdn.net/acceptedxukai/article/details/6926431,原文解释更加详细,推荐阅读

设计一个算法,时间复杂度要求O(nlogn)时间,使给定的整数n和m,输出(n,m)-Josephus排列。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <ctime>
using namespace std;
#define LL long long
const int N = 10005;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

int sum[N<<2];
int tree[N<<2][2];

void PushUp(int rt)
{
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}

void build(int l,int r,int rt)
{
    tree[rt][0] = l;
    tree[rt][1] = r;
    if(l == r)
    {
        sum[rt] = 1;
        return;
    }
    int m = (l+r)>>1;
    build(lson);
    build(rson);
    PushUp(rt);
}

int update(int p,int rt)
{
    sum[rt] --;
    if(tree[rt][0] == tree[rt][1])
    {
        sum[rt] = 0;
        return tree[rt][0];//从绝对位置剔除
    }
    if(p <= sum[rt<<1]) return update(p,rt<<1);
    else return update(p-sum[rt<<1],rt<<1|1);
    PushUp(rt);
}

int main()
{

    int n,m;
    while(~scanf("%d %d",&n,&m))
    {
        build(1,n,1);
        for(int i = 1 ; i <= 15 ;  i ++) cout<<sum[i]<<" "<<tree[i][0]<<" "<<tree[i][1]<<endl;
        int pos = 1;
        int seq = 1;
        for(int i = 0 ; i < n ; i++)
        {
            seq = (seq + m - 1) % sum[1];//seq 只是相对位置
            if(seq == 0) seq = sum[1];
            cout<<"seq = "<<seq<<"; ";
            pos = update(seq,1);
            cout<<pos<<" ";
        }
    }
    return 0;
}

约瑟夫问题:递归算法

本段地址:http://www.cnblogs.com/yangyh/archive/2011/10/30/2229517.html
假设下标从0开始,0,1,2 .. m-1共m个人,从1开始报数,报到k则此人从环出退出,问最后剩下的一个人的编号是多少?

现在假设m=10

0 1 2 3 4 5 6 7 8 9 k=3

第一个人出列后的序列为:

0 1 3 4 5 6 7 8 9

即:

3 4 5 6 7 8 9 0 1(*)

我们把该式转化为:

0 1 2 3 4 5 6 7 8 (**)

则你会发现: ((*)+3)%10则转化为()式了

也就是说,我们求出9个人中第9次出环的编号,最后进行上面的转换就能得到10个人第10次出环的编号了

设f(m,k,i)为m个人的环,报数为k,第i个人出环的编号,则f(10,3,10)是我们要的结果

当i=1时, f(m,k,i) = (m+k-1)%m

当i!=1时, f(m,k,i)= ( f(m-1,k,i-1)+k )%m

所以程序如下:

int fun(int m,int k,int i){

    if(i==1)
        return (m+k-1)%m;
    else
        return (fun(m-1,k,i-1)+k)%m;

}
int main(int argc, char* argv[])
{

    for(int i=1;i<=10;i++)
        printf("第%2d次出环:%2d\n",i,fun(10,3,i));
    return 0;
}

执行结果:

第 1次出环: 2
第 2次出环: 5
第 3次出环: 8
第 4次出环: 1
第 5次出环: 6
第 6次出环: 0
第 7次出环: 7
第 8次出环: 4
第 9次出环: 9
第10次出环: 3

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值