
YOLO改进
文章平均质量分 95
FL1623863129
这个作者很懒,什么都没留下…
展开
-
[yolov11改进系列]基于yolov11引入多尺度空洞注意力MSDA的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-06-01 10:52:03 · 226 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入迭代注意力特征融合iAFF的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-06-01 08:14:48 · 592 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入上下文锚点注意力CAA的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-06-01 07:07:37 · 606 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入可变形注意力DAttention的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-06-01 06:32:20 · 437 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入跨空间学习的高效多尺度注意力EMA的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-31 15:56:01 · 599 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入重参数化模块DiverseBranchBlock的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-31 09:33:30 · 456 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入高效上采样卷积块EUCB的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-31 08:50:07 · 786 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入高效坐标注意力机制CoordAttention的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-31 07:37:42 · 570 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入全局注意力机制GAM的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-30 19:55:54 · 989 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入轻量级注意力机制模块ECA的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-30 10:57:14 · 723 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入双通道注意力机制CBAM的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-30 10:29:37 · 855 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入大型分离卷积注意力模块LSKA减少计算复杂性和内存的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-30 08:15:15 · 599 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入倒置残差块块注意力机制iEMA的python源码+训练源码
倒置残差块(IRB)作为轻量级CNN的基础设施,在基于注意力的研究中尚未有对应的部分。本文从统一的视角重新考虑了基于高效IRB和Transformer有效组件的轻量级基础设施,将基于CNN的IRB扩展到基于注意力的模型,并抽象出一个残差的元移动块(MMB)用于轻量级模型设计。遵循简单但有效的设计准则,本文推导出了现代化的倒置残差移动块(IRMB),并以此构建了类似ResNet的高效模型(EMO)用于下游任务。原创 2025-05-29 10:21:52 · 885 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入反向残留移动块注意力机制iRMB的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-29 09:03:22 · 988 阅读 · 0 评论 -
[yolov11改进系列]使用ConvNeXtV2替换backbone用于增强特征学习和多样性的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-29 07:34:35 · 672 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入双卷积DualConv用于轻量化网络的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-29 06:43:37 · 960 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入高效卷积模块SCConv减少冗余计算并提升特征学习的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-28 16:04:31 · 1029 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入混合标准卷积与深度可分离卷积GSConv用于轻量化网络的python源码+训练源码
GSConv通过优雅的混合策略解决了轻量化卷积的表示瓶颈,SNs架构将其优势聚焦于检测器颈部。实验表明该方法在边缘设备上实现精度与速度的帕累托最优,为实时检测提供新范式。未来可扩展至低光检测、遥感图像等场景。【yolov11框架介绍】2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模。原创 2025-05-28 14:11:39 · 909 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入空间深度转换卷积SPDConv用于低分辨率图像和小物体的python源码+训练源码
卷积神经网络(CNN)在图像分类、目标检测等计算机视觉任务中取得了巨大的成功。然而,在图像分辨率较低或对象较小的更困难的任务中,它们的性能会迅速下降。这源于现有CNN体系结构中一个有缺陷但却很常见的设计,即使用strided convolution和/或池化层,这导致了细粒度信息的丢失和较低效率的特征表示的学习。为此,我们提出了一种新的CNN模块,称为SPD-Conv,以取代每个strided convolution和每个池化层(从而完全消除了它们)。原创 2025-05-28 11:10:51 · 709 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入动态卷积DynamicConv的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-28 09:37:20 · 676 阅读 · 0 评论 -
[yolov11改进系列]使用轻量级反向残差块网络EMO替换backbone的python源码+训练源码
反向残差块(Inverted Rsidual Block,IRB)是轻量级CNNs的基础架构,但在基于注意力的研究中还没有相应的对应部分。这项工作从统一的视角重新思考高效IRB和的有效组件,将基于CNN的IRB扩展到基于注意力的模型,并抽象出一个用于轻量级模型设计的单残差元移动块本文推导出了一个现代化的方向残差移动块(Inverted Residual Mobile Block, iRMB),仅使用iRMB构建一个类似ResNet的高效模型(Efficient Model, EMO),用于下游任务。原创 2025-05-28 07:53:56 · 845 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入可改变核卷积AKConv的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-27 17:43:21 · 1047 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入分布移位卷积DSConv的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-27 13:59:17 · 982 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入全维度动态卷积ODConv的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-27 13:12:59 · 740 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入异构卷积HetConv提升效率而损失准确度的python源码+训练源码
在深度学习领域,卷积神经网络是非常重要的一类模型,它们在图像处理、自然语言处理、语音识别等多个领域都有广泛应用。然而,由于卷积操作的局限性,传统的卷积神经网络在处理非均匀、不规则的数据时会受到限制。为了克服这个问题,学者们提出了很多改进的卷积操作,其中就包括了本文要介绍的HetConv。与传统卷积相比,HetConv能够在处理非均匀、不规则的数据时发挥更强的效果,因此在实际应用中具有广泛的应用前景。接下来,我们将对HetConv的原理、优点和应用进行详细介绍。原创 2025-05-27 08:20:54 · 559 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入感受野注意力卷积RFAConv的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-27 06:54:59 · 817 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入级联群体注意力机制CGAttention的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-26 13:00:08 · 610 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入可切换空洞卷积SAConv模块python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-26 10:53:14 · 912 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入轻量级Triplet Attention三重注意力模块python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-26 10:09:38 · 592 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11轻量化下采样操作ADown改进Conv卷积减少参数量python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-26 08:45:04 · 890 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入特征增强注意力机制ADNet的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-26 07:58:22 · 981 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入自注意力与卷积混合模块ACmix提高FPS+检测效率python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-26 07:19:35 · 1058 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11的修改检测头为自适应特征融合模块为ASFFHead检测头的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-26 06:37:11 · 1455 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11的骨干轻量化更换backbone为shufflenetv1网络python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-25 21:08:25 · 836 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11的骨干轻量化更换backbone为shufflenetv2网络python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-25 14:19:45 · 1054 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入双层路由注意力机制Biformer解决小目标遮挡等问题python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-25 11:04:23 · 606 阅读 · 0 评论 -
[yolov11改进系列]使用轻量级骨干网络MobileNetV1替换backbone的python源码+训练源码
传统卷积神经网络, 内存需求大、 运算量大导致无法在移动设备以及嵌入式设备上运行.VGG16的权重大小有450M,而ResNet中152层的模型,其权重模型644M,这么大的内存需求是明显无法在嵌入式设备上进行运行的。而网络应该服务于生活,所以轻量级网络的很重要的。MobileNet网络是由google团队在2017年提出的,专注于移动端或者嵌入式设备中的轻量级CNN网络。相比传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量。原创 2025-05-25 09:02:01 · 633 阅读 · 0 评论 -
[yolov11改进系列]使用轻量级骨干网络MobileNetV2替换backbone的python源码+训练源码
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-25 06:48:43 · 806 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11添加SE注意力机制python源码+训练源码+改进原理+改进流程
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-24 09:47:44 · 783 阅读 · 0 评论 -
[yolov11改进系列]基于yolov11引入混合局部通道注意力机制MLCA的python源码+训练源码+改进原理+改进流程
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。原创 2025-05-24 14:20:41 · 790 阅读 · 0 评论