基于yolov11的树上地下柑橘橘子检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面

【算法介绍】

基于YOLOv11的树上地下柑橘橘子检测系统介绍

该系统基于YOLOv11模型构建,用于精准检测柑橘橘子在树上(on_tree)和地下(on_ground)的位置,为果园管理提供重要数据支持。

系统采用YOLOv11作为核心算法框架,相较于之前版本,YOLOv11在检测精度和速度上都有显著提升。其主干网络采用C3k2块,替代了之前版本中的C2f块,提升了计算效率;在颈部引入了C2PSA模块,增强了空间注意力机制,使模型能够更好地捕捉柑橘橘子的特征。

数据集方面,系统使用了专门为果园环境设计的数据集,包含标注了边界框的图像,用于标记树上和地面上的果实。数据集经过精心组织,分为训练集、验证集,以满足不同阶段的模型训练需求。

系统具备图像、视频和摄像实时检测功能,用户可以通过简洁直观的界面选择图片文件、视频文件或调用摄像头进行实时检测。检测结果会实时显示在界面上,方便后续查看和分析。

该系统为果园的产量分析、疾病影响评估以及精准植保提供了有力支持,有助于提高果园的管理效率和经济效益。

【效果展示】

 

【训练数据集介绍】

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):579

标注数量(xml文件个数):579

标注数量(txt文件个数):579

标注类别数:2

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["on_ground","on_tree"]

每个类别标注的框数:

on_ground 框数 = 25319

on_tree 框数 = 17334

总框数:42653

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:

标注例子:

     

    【训练信息】

    参数
    训练集图片数521
    验证集图片数58
    训练map78.2%
    训练精度(Precision)79.2%
    训练召回率(Recall)68.1%

    【验证集精度统计】

    Class

    Images

    Instances

    P

    R

    mAP50

    mAP50-95

    all

    58

    4399

    0.792

    0.681

    0.782

    0.446

    on_ground

    58

    2489

    0.826

    0.663

    0.787

    0.459

    on_tree

    58

    1910

    0.758

    0.699

    0.776

    0.432

    【测试环境】

    windows10
    anaconda3+python3.8
    torch==2.3.0
    ultralytics==8.3.81
    onnxruntime==1.16.3

    【界面设计】

    class Ui_MainWindow(QtWidgets.QMainWindow):
        signal = QtCore.pyqtSignal(str, str)
     
        def setupUi(self):
            self.setObjectName("MainWindow")
            self.resize(1280, 728)
            self.centralwidget = QtWidgets.QWidget(self)
            self.centralwidget.setObjectName("centralwidget")
     
            self.weights_dir = './weights'
     
            self.picture = QtWidgets.QLabel(self.centralwidget)
            self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))
            self.picture.setStyleSheet("background:black")
            self.picture.setObjectName("picture")
            self.picture.setScaledContents(True)
            self.label_2 = QtWidgets.QLabel(self.centralwidget)
            self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))
            self.label_2.setObjectName("label_2")
            self.cb_weights = QtWidgets.QComboBox(self.centralwidget)
            self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))
            self.cb_weights.setObjectName("cb_weights")
            self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)
     
            self.label_3 = QtWidgets.QLabel(self.centralwidget)
            self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))
            self.label_3.setObjectName("label_3")
            self.hs_conf = QtWidgets.QSlider(self.centralwidget)
            self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))
            self.hs_conf.setProperty("value", 25)
            self.hs_conf.setOrientation(QtCore.Qt.Horizontal)
            self.hs_conf.setObjectName("hs_conf")
            self.hs_conf.valueChanged.connect(self.conf_change)
            self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)
            self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))
            self.dsb_conf.setMaximum(1.0)
            self.dsb_conf.setSingleStep(0.01)
            self.dsb_conf.setProperty("value", 0.25)
            self.dsb_conf.setObjectName("dsb_conf")
            self.dsb_conf.valueChanged.connect(self.dsb_conf_change)
            self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)
            self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))
            self.dsb_iou.setMaximum(1.0)
            self.dsb_iou.setSingleStep(0.01)
            self.dsb_iou.setProperty("value", 0.45)
            self.dsb_iou.setObjectName("dsb_iou")
            self.dsb_iou.valueChanged.connect(self.dsb_iou_change)
            self.hs_iou = QtWidgets.QSlider(self.centralwidget)
            self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))
            self.hs_iou.setProperty("value", 45)
            self.hs_iou.setOrientation(QtCore.Qt.Horizontal)
            self.hs_iou.setObjectName("hs_iou")
            self.hs_iou.valueChanged.connect(self.iou_change)
            self.label_4 = QtWidgets.QLabel(self.centralwidget)
            self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))
            self.label_4.setObjectName("label_4")
            self.label_5 = QtWidgets.QLabel(self.centralwidget)
            self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))
            self.label_5.setObjectName("label_5")
            self.le_res = QtWidgets.QTextEdit(self.centralwidget)
            self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))
            self.le_res.setObjectName("le_res")
            self.setCentralWidget(self.centralwidget)
            self.menubar = QtWidgets.QMenuBar(self)
            self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))
            self.menubar.setObjectName("menubar")
            self.setMenuBar(self.menubar)
            self.statusbar = QtWidgets.QStatusBar(self)
            self.statusbar.setObjectName("statusbar")
            self.setStatusBar(self.statusbar)
            self.toolBar = QtWidgets.QToolBar(self)
            self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)
            self.toolBar.setObjectName("toolBar")
            self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)
            self.actionopenpic = QtWidgets.QAction(self)
            icon = QtGui.QIcon()
            icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
            self.actionopenpic.setIcon(icon)
            self.actionopenpic.setObjectName("actionopenpic")
            self.actionopenpic.triggered.connect(self.open_image)
            self.action = QtWidgets.QAction(self)
            icon1 = QtGui.QIcon()
            icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
            self.action.setIcon(icon1)
            self.action.setObjectName("action")
            self.action.triggered.connect(self.open_video)
            self.action_2 = QtWidgets.QAction(self)
            icon2 = QtGui.QIcon()
            icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
            self.action_2.setIcon(icon2)
            self.action_2.setObjectName("action_2")
            self.action_2.triggered.connect(self.open_camera)
     
            self.actionexit = QtWidgets.QAction(self)
            icon3 = QtGui.QIcon()
            icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
            self.actionexit.setIcon(icon3)
            self.actionexit.setObjectName("actionexit")
            self.actionexit.triggered.connect(self.exit)
     
            self.toolBar.addAction(self.actionopenpic)
            self.toolBar.addAction(self.action)
            self.toolBar.addAction(self.action_2)
            self.toolBar.addAction(self.actionexit)
     
            self.retranslateUi()
            QtCore.QMetaObject.connectSlotsByName(self)
            self.init_all()

    【模型可检测出2类】

    树上(on_tree)和地下(on_ground)

    【常用评估参数介绍】

    在目标检测任务中,评估模型的性能是至关重要的。你提到的几个术语是评估模型性能的常用指标。下面是对这些术语的详细解释:

    1. Class
      • 这通常指的是模型被设计用来检测的目标类别。例如,一个模型可能被训练来检测车辆、行人或动物等不同类别的对象。
    2. Images
      • 表示验证集中的图片数量。验证集是用来评估模型性能的数据集,与训练集分开,以确保评估结果的公正性。
    3. Instances
      • 在所有图片中目标对象的总数。这包括了所有类别对象的总和,例如,如果验证集包含100张图片,每张图片平均有5个目标对象,则Instances为500。
    4. P(精确度Precision)
      • 精确度是模型预测为正样本的实例中,真正为正样本的比例。计算公式为:Precision = TP / (TP + FP),其中TP表示真正例(True Positives),FP表示假正例(False Positives)。
    5. R(召回率Recall)
      • 召回率是所有真正的正样本中被模型正确预测为正样本的比例。计算公式为:Recall = TP / (TP + FN),其中FN表示假负例(False Negatives)。
    6. mAP50
      • 表示在IoU(交并比)阈值为0.5时的平均精度(mean Average Precision)。IoU是衡量预测框和真实框重叠程度的指标。mAP是一个综合指标,考虑了精确度和召回率,用于评估模型在不同召回率水平上的性能。在IoU=0.5时,如果预测框与真实框的重叠程度达到或超过50%,则认为该预测是正确的。
    7. mAP50-95
      • 表示在IoU从0.5到0.95(间隔0.05)的范围内,模型的平均精度。这是一个更严格的评估标准,要求预测框与真实框的重叠程度更高。在目标检测任务中,更高的IoU阈值意味着模型需要更准确地定位目标对象。mAP50-95的计算考虑了从宽松到严格的多个IoU阈值,因此能够更全面地评估模型的性能。

    这些指标共同构成了评估目标检测模型性能的重要框架。通过比较不同模型在这些指标上的表现,可以判断哪个模型在实际应用中可能更有效。

    【使用步骤】

    使用步骤:
    (1)首先根据官方框架ultralytics安装教程安装好yolov11环境,并安装好pyqt5
    (2)切换到自己安装的yolo11环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

    【提供文件】

    python源码
    yolo11n.pt模型
    训练的map,P,R曲线图(在weights\results.png)
    测试图片(在test_img文件夹下面)

    注意提供训练的数据集,请到mytxt.txt文件中找到地址

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    FL1623863129

    你的打赏是我写文章最大的动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值