环境搭建-复现ST-GCN输出动作分类视频(win10+openpose1.7.0+VS2019+CMake3.30.1+cuda11.1)

这次我们安装github.com/yysijie/st-gcn这个作者源码环境,安装流程十分复杂这里介绍大体流程。

1.首先编译openpose的python API接口这个编译难度较大,具体参考博文:windows编译openpose及在python中调用_python openpose-CSDN博客
 

这个博文是我参考别人的以及自己实际经验写的,流程和博文描述一致,环境要求

  • windows 10 64bit
  • openpose 1.7.0
  • cuda 11.1
  • cudnn 8.0.5.39
  • visual studio 2019
  • >=cmake 3.20.2

温馨提示:安装前电脑必须有nvidia显卡且显存>=6GB,否则本博文就不用看了,因为就算安装成功也不能用。

2. 安装torch和torhvision

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html

3.安装环境所需的其他python库

pip install -r  requirements.txt

4. 安装ffmpeg

conda install ffmpeg

5. 安装torchlight

先切换到源码目录

cd ./torchlight
python setup.py install

6. 获取预训练模型

下载ST-GCN所需模型(.pt文件):
模型链接:gitee.com/FIRC/fircfiles/blob/master/st-gcn.md
1). 下载好的st_gcn.kinetics.pt等文件放到 st-gcn/models中。
2). pose_iter_440000.caffemodel(安装的openpose中的models/pose/coco下有)放到st-gcn/models/pose/coco中。

7. 安装PyYAML(如果不安装就会出现如下情况:AttributeError: module 'yaml' has no attribute 'FullLoader'AttributeError: module 'yaml' has no attribute 'FullLoader')

pip install -U PyYAML

9.执行检测代码

!python main.py demo --video ./resource/media/ta_chi.mp4 --openpose /content/openpose/build

然后就会出现结果了:

现实预测结果是tai_chi,可视化完成,并且把结果保存在 ./data/demo_result/ta_chi.mp4.

我们把它下载到本地,然后打开。

复现成功!!!

也可以换一个视频测试一下,比如执行

!python main.py demo --video ./resource/media/skateboarding.mp4 --openpose /content/openpose/build

大功告成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值