达摩院2020十大科技趋势发布:云成IT技术创新中心

达摩院预测2020年科技趋势,涵盖AI、芯片、云计算、区块链等领域,包括AI从感知智能向认知智能演进、计算存储一体化突破AI算力瓶颈、工业互联网超融合、机器间大规模协作、模块化芯片设计、规模化生产级区块链应用、量子计算进入攻坚期、新材料推动半导体革新、保护数据隐私的AI技术加速落地、云成IT技术创新中心。
摘要由CSDN通过智能技术生成

2020年第一个工作日,“达摩院2020十大科技趋势”发布。这是继2019年之后,阿里巴巴达摩院第二次预测年度科技趋势。

回望2019年的科技领域,静水流深之下仍有暗潮涌动。AI芯片崛起、智能城市诞生、5G催生全新应用场景……达摩院去年预测的科技趋势一一变为现实。科技浪潮新十年开启,围绕AI、芯片、云计算、区块链、工业互联网、量子计算等领域,达摩院继续提出最新趋势,并断言多个领域将出现颠覆性技术突破。

芯片技术推动了历次科技浪潮,但随着摩尔定律的放缓和高算力需求场景的井喷,传统芯片陷入性能增长瓶颈,业界试图从芯片产业链的各个环节寻找破解之道。达摩院认为,芯片领域的重大突破极有可能在体系架构、基础材料和设计方法三处实现。

体系架构方面,存储、计算分离的冯·诺依曼架构难以满足日益复杂的计算任务,业界正在探索计算存储一体化架构,以突破芯片的算力和功耗瓶颈;基础材料方面,以硅为代表的半导体材料趋于性能极限,半导体产业的持续发展需寄望于拓扑绝缘体、二维超导材料等新材料;芯片设计方法也需应势升级,基于芯粒(chiplet)的模块化设计方法可取代传统方法,让芯片设计变得像搭积木一样快速。

芯片技术突破的背后是“算力爆炸”,而人工智能无疑是未来最重要的算力需求方和技术牵引者。目前,语音、视觉、自然语言处理等感知AI技术的发展已到极限,但在通向“强人工智能”的认知智能方面,AI还处在初级发展阶段。达摩院认为,在不久的将来,AI有望习得自主意识、推理能力以及情绪感知能力,实现从感知智能向认知智能的演进。

AI的认知演进,使得机器间的“群体智能”成为可能。达摩院预测,今后AI不仅懂得“人机协同”,还能做到“机机协同”。当机器像人一样,彼此合作、相互竞争共同完成目标任务,大规模智能交通灯调度、仓储机器人协作分拣货物、无人驾驶车自主感知全局路况等场景便不难想象。

与人工智能技术范式转变同步的是IT技术范式的转变。传统物理机、网络、软件等发展失速,云计算正在融合软件、算法和硬件,加速各行各业的数字化转型。达摩院指出,无论芯片、AI还是区块链,所有技术创新都将以云平台为中心,为云定制的芯片、与云深度融合的AI、云上的区块链应用将层出不穷。一言以蔽之,云将成所有IT技术创新的中心。

科研与应用间的张力是科技进步的永恒动力。达摩院的科技预测既有前瞻性又充分考虑落地性。去年,达摩院提出,区块链的商业化应用将加速,这一论断得到了现实验证。2019年,区块链技术上升为国家战略,在数字金融、数字政府、智能制造等领域逐步落地。达摩院认为,2020年企业应用区块链技术的门槛将进一步降低,专为区块链设计的端、云、链各类固化核心算法的硬件芯片等也将应运而生,日活千万的区块链应用将走入大众。

趋势一:人工智能从感知智能向认知智能演进

人工智能已经在“听、说、看”等感知智能领域已经达到或超越了人类水准,但在需要外部知识、逻辑推理或者领域迁移的认知智能领域还处于初级阶段。认知智能将从认知心理学、脑科学及人类社会历史中汲取灵感,并结合领域知识图谱、因果推理、持续学习等技术,建立稳定获取和表达知识的有效机制,让知识能够被机器理解和运用,实现从感知智能到认知智能的关键突破。

趋势二:计算存储一体化突破AI算力瓶颈

冯诺伊曼架构的存储和计算分离,已经不适合数据驱动的人工智能应用需求。频繁的数据搬运导致的算力瓶颈以及功耗瓶颈已经成为对更先进算法探索的限制因素。类似于脑神经结构的存内计算架构将数据存储单元和计算单元融合为一体,能显著减少数据搬运,极大提高计算并行度和能效。计算存储一体化在硬件架构方面的革新,将突破AI算力瓶颈。

趋势三:工业互联网的超融合

5G、IoT设备、云计算、边缘计算的迅速发展将推动工业互联网的超融合,实现工控系统、通信系统和信息化系统的智能化融合。制造企业将实现设备自动化、搬送自动化和排产自动化,进而实现柔性制造,同时工厂上下游制造产线能实时调整和协同。这将大幅提升工厂的生产效率及企业的盈利能力。对产值数十万亿乃至数百万亿的工业产业而言,提高5%-10%的效率,就会产生数万亿人民币的价值。

趋势四:机器间大规模协作成为可能

传统单体智能无法满足大规模智能设备的实时感知、决策。物联网协同感知技术、5G通信技术的发展将实现多个智能体之间的协同——机器彼此合作、相互竞争共同完成目标任务。多智能体协同带来的群体智能将进一步放大智能系统的价值:大规模智能交通灯调度将实现动态实时调整,仓储机器人协作完成货物分拣的高效协作,无人驾驶车可以感知全局路况,群体无人机协同将高效打通最后一公里配送。

趋势五:模块化降低芯片设计门槛

传统芯片设计模式无法高效应对快速迭代、定制化与碎片化的芯片需求。以RISC-V为代表的开放指令集及其相应的开源SoC芯片设计、高级抽象硬件描述语言和基于IP的模板化芯片设计方法,推动了芯片敏捷设计方法与开源芯片生态的快速发展。此外,基于芯粒(chiplet)的模块化设计方法用先进封装的方式将不同功能“芯片模块”封装在一起,可以跳过流片快速定制出一个符合应用需求的芯片,进一步加快了芯片的交付。

趋势六:规模化生产级区块链应用将走入大众

区块链BaaS(Blockchain as a Service)服务将进一步降低企业应用区块链技术的门槛,专为区块链设计的端、云、链各类固化核心算法的硬件芯片等也将应运而生,实现物理世界资产与链上资产的锚定,进一步拓展价值互联网的边界、实现万链互联。未来将涌现大批创新区块链应用场景以及跨行业、跨生态的多维协作,日活千万以上的规模化生产级区块链应用将会走入大众。

趋势七:量子计算进入攻坚期

2019年,“量子霸权”之争让量子计算在再次成为世界科技焦点。超导量子计算芯片的成果,增强了行业对超导路线及对大规模量子计算实现步伐的乐观预期。2020年量子计算领域将会经历投入进一步增大、竞争激化、产业化加速和生态更加丰富的阶段。作为两个最关键的技术里程碑,容错量子计算和演示实用量子优势将是量子计算实用化的转折点。未来几年内,真正达到其中任何一个都将是十分艰巨的任务,量子计算将进入技术攻坚期。   

趋势八:新材料推动半导体器件革新

在摩尔定律放缓以及算力和存储需求爆发的双重压力下,以硅为主体的经典晶体管很难维持半导体产业的持续发展,各大半导体厂商对于3纳米以下的芯片走向都没有明确的答案。新材料将通过全新物理机制实现全新的逻辑、存储及互联概念和器件,推动半导体产业的革新。例如,拓扑绝缘体、二维超导材料等能够实现无损耗的电子和自旋输运,可以成为全新的高性能逻辑和互联器件的基础;新型磁性材料和新型阻变材料能够带来高性能磁性存储器如SOT-MRAM和阻变存储器。  

趋势九:保护数据隐私的AI技术将加速落地

数据流通所产生的合规成本越来越高。使用AI技术保护数据隐私正在成为新的技术热点,其能够在保证各方数据安全和隐私的同时,联合使用方实现特定计算,解决数据孤岛以及数据共享可信程度低的问题,实现数据的价值。   

趋势十:云成为IT技术创新的中心

随着云技术的深入发展,云已经远远超过IT基础设施的范畴,渐渐演变成所有IT技术创新的中心。云已经贯穿新型芯片、新型数据库、自驱动自适应的网络、大数据、AI、物联网、区块链、量子计算整个IT技术链路,同时又衍生了无服务器计算、云原生软件架构、软硬一体化设计、智能自动化运维等全新的技术模式,云正在重新定义IT的一切。广义的云,正在源源不断地将新的IT技术变成触手可及的服务,成为整个数字经济的基础设施。

 

 

[入门数据分析的第一堂课]这是一门为数据分析小白量身打造的课程,你从网络或者公众号收集到很多关于数据分析的知识,但是它们零散不成体系,所以第一堂课首要目标是为你介绍:Ø  什么是数据分析-知其然才知其所以然Ø  为什么要学数据分析-有目标才有动力Ø  数据分析的学习路线-有方向走得更快Ø  数据分析的模型-分析之道,快速形成分析思路Ø  应用案例及场景-分析之术,掌握分析方法[哪些同学适合学习这门课程]想要转行做数据分析师的,零基础亦可工作中需要数据分析技能的,例如运营、产品等对数据分析感兴趣,想要更多了解的[你的收获]n  会为你介绍数据分析的基本情况,为你展现数据分析的全貌。让你清楚知道自己该如何在数据分析地图上行走n  会为你介绍数据分析的分析方法和模型。这部分是讲数据分析的道,只有学会底层逻辑,能够在面对问题时有自己的想法,才能够下一步采取行动n  会为你介绍数据分析的数据处理和常用分析方法。这篇是讲数据分析的术,先有道,后而用术来实现你的想法,得出最终的结论。n  会为你介绍数据分析的应用。学到这里,你对数据分析已经有了初步的认识,并通过一些案例为你展现真实的应用。[专享增值服务]1:一对一答疑         关于课程问题可以通过微信直接询问老师,获得老师的一对一答疑2:转行问题解答         在转行的过程中的相关问题都可以询问老师,可获得一对一咨询机会3:打包资料分享         15本数据分析相关的电子书,一次获得终身学习
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值