一、背景介绍
在互联网时代,了解各个公司的情况对于行业分析、竞争对手研究以及投资决策都非常重要。而站长之家作为国内知名的IT门户网站,提供了大量的公司介绍信息。本文将介绍如何使用Python编写爬虫程序,从站长之家上爬取公司介绍数据,并保存到Excel表格中,以便后续分析使用。
二、环境准备
在开始之前,我们需要准备好Python的环境。确保已经安装了Python 3.x,并安装了以下依赖库:
- requests
- bs4(BeautifulSoup)
- tqdm
- concurrent.futures
- random
- urllib3 你可以使用pip命令进行安装,例如:pip install requests
三、代码实现
下面是完整的爬取站长之家公司介绍数据的Python代码:
#!/usr/bin/env python3
# coding:utf-8
import re
import requests
import bag
from bs4 import BeautifulSoup
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor
import random
import urllib3
urllib3.disable_warnings()
data_urls = []
result = []
def main():
base_url = r'https://top.chinaz.com/gongsi/index_shizhi.html'
page_urls = get_num_page(base_url)
process_pool = ProcessPoolExecutor(max_workers=10)
for link in tqdm(page_urls, desc='获取数据链接'):
headers = {
'User-Agent': ''
}
user_agent_list = [
"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; …) Gecko/20100101 Firefox/61.0",
"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.62 Safari/537.36",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36",
"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)",
"Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.2.15) Gecko/20110303 Firefox/3.6.15"
]
headers['User-Agent'] = random.choice(user_agent_list)
pool = process_pool.submit(get_data_url, link, headers)
pool.add_done_callback(parser)
process_pool.shutdown(wait=True)
links = []
for i in data_urls:
for j in i:
links.append(j)
process_pool1 = ProcessPoolExecutor(max_workers=10)
for url in tqdm(links, desc='获取数据'):
headers = {
'User-Agent': ''
}
user_agent_list = [
"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; …) Gecko/20100101 Firefox/61.0",
"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.62 Safari/537.36",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36",
"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)",
"Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.2.15) Gecko/20110303 Firefox/3.6.15"
]
headers['User-Agent'] = random.choice(user_agent_list)
pool1 = process_pool1.submit(get_data, url, headers)
pool1.add_done_callback(parser1)
process_pool1.shutdown(wait=True)
bag.Bag.save_excel(result, r'./公司介绍.xlsx')
def parser(res):
try:
data_urls.append(res.result())
except:
pass
def parser1(res):
try:
result.append(res.result())
except:
pass
def get_data(url, headers):
res = []
resp = requests.get(url, headers=headers)
resp.encoding = 'utf8'
resp.close()
html = BeautifulSoup(resp.text, 'lxml')
full_name = re.compile(r'<h1>(.*?)</h1>', re.S)
soup = html.find_all('div', class_='CoConyRight')
for T in soup:
if T['title'] == '':
res.append('None')
else:
res.append(T['title'])
for t in re.findall(full_name, str(soup)):
if t == '':
res.append('None')
else:
res.append(t)
soup1 = html.find_all('div', class_='CoConyText')
for label in soup1:
if label.span.a.text == '':
res.append('None')
else:
res.append(label.span.a.text)
soup2 = html.find_all('div', id='rom_des')
for content in soup2:
if content.text == '':
res.append('None')
else:
res.append(content.text)
res.append(url)
return res
def get_data_url(url, headers):
links = []
resp = requests.get(url, headers=headers)
resp.encoding = 'utf8'
resp.close()
html = BeautifulSoup(resp.text, 'lxml')
soup = html.find_all('div', class_='CoListTxt')
for link in soup:
links.append('https://top.chinaz.com'+link.a['href'])
return links
def get_num_page(url):
page_url = []
for num in range(1):
if num < 1:
page_url.append(url)
else:
page_url.append('https://top.chinaz.com/gongsi/index_shizhi_{}.html'.format(num+1))
return page_url
if __name__ == '__main__':
main()
四、代码解析
- 导入所需的模块和库,包括re、requests、
BeautifulSoup
等 - 设置全局变量
data_urls
和result
,分别用于保存数据链接和爬取结果 - 定义
main()
函数作为程序的入口,实现整个爬取过程的控制流程 - 在
main()
函数中,首先获取需要爬取的页面链接列表page_urls
- 创建
ProcessPoolExecutor
进程池,设置最大工作线程数为10 - 遍历
page_urls
,使用get_data_url()
函数从每个页面中获取公司详情页的链接 - 将获取的链接保存到
data_urls
中,并通过parser()
函数处理异常。 - 将所有公司详情页的链接提取到
links
列表中 - 遍历
links
,使用get_data()
函数爬取每个公司的介绍数据 - 将爬取结果保存到
result
中,并通过parser1()
函数处理异常 - 关闭进程池,并调用
Bag.save_excel()
函数将结果保存到Excel表格中 - 定义
parser()
和parser1()
函数,用于处理进程的返回值,并将返回值添加到data_urls
和result
中 - 定义
get_data()
函数,用于爬取公司介绍数据 - 在
get_data()
函数中,发送HTTP请求,解析HTML文档,提取所需的公司介绍数据,并返回结果 - 定义
get_data_url()
函数,用于从页面中获取公司详情页的链接 - 在
get_data_url()
函数中,发送HTTP请求,解析HTML文档,提取公司详情页的链接,并返回结果 - 定义
get_num_page()
函数,用于生成需要爬取的页面链接列表 - 在
__name__ == '__main__'
的条件下,调用main()
函数开始执行程序。
五、运行结果
运行以上代码,即可将公司介绍数据爬取并保存到Excel表格中。你可以根据自己的需求,修改代码中爬取的页数和保存路径和文件名。
六、总结
本文介绍了如何使用Python编写爬虫程序,爬取站长之家上的公司介绍数据。通过合理的代码设计和多线程的并发处理,提高了爬取效率。希望本文对你在爬取网页数据和数据分析方面有所帮助。
最后,如果你觉得本教程对你有所帮助,不妨点赞并关注我的CSDN账号。我会持续为大家带来更多有趣且实用的教程和资源。谢谢大家的支持!