- 博客(42)
- 资源 (3)
- 收藏
- 关注
原创 大模型笔记带实操记录
大模型训练的三个关键步骤:预训练(自监督学习,学习语言规律)、监督微调(SFT,将知识转化为人类可理解的回答)和优化阶段(RLHF/DPO,提升回答质量)。训练双模态模型时,需融合视觉与语言模型,通过图像嵌入转换和参数微调实现图文联合理解。代码展示了如何将视觉特征压缩后输入语言模型,保留原始空间关系。整个流程强调数据质量与高效参数更新的平衡。
2025-08-17 05:49:22
1008
原创 从零开始构建Agent(三):手搓一个基于langgraph的agent,简略版“Manus”,实现分析文档等小部分功能
利用langgraph框架构建可分析文档的agent,附源码。
2025-07-14 19:54:21
922
原创 从零开始构建Agent(二):Gemini-fullstack-langgraph-quickstart项目,一个很经典的Reflection模型
解析gemini-fullstack-langgraph-quickstart项目的后端架构并优化。
2025-07-09 17:23:20
1142
原创 llama-factory微调Qwen2.5-7B-instruct实战,看这一篇就够了!!!(含windows和linux)
llama-factory微调Qwen2.5-7B-instruct实战,看这一篇就够了!!!(含windows和linux)
2025-03-20 16:56:01
2297
1
原创 Attention Is All You Need(Transformer)详解以及代码复现
Attention Is All You Need(Transformer)详解以及代码复现
2024-06-19 17:31:44
2618
4
原创 基于Bert的知识库智能问答系统
利用预训练的 BERT模型来实现自然语言理解和问答,同时将知识库和问答系统进行整合,从而能够对用户提出的问题进行准确、高效的回答。该系统通过将问题和知识库中的实体和关系进行匹配,从而找到最佳答案。具体来说,本系统先将三个属性:实体(问题),实体关系(实体属性),实体(答案)存储进 mysql 数据库。当提出问题时,用 BertCrf模型来识别出问题中所包含的实体,识别出实体之后就可以进行数据库的查询;识别出实体后就需要进行实体与属性的连接,利用BertForSequenceClassification模型进
2023-04-21 00:26:04
6749
21
原创 python -- Python二手车交易数据获取
通过 Chrome 浏览器登录数据来源页,使用 Chrome 的检查功能,多次刷新,先分析要爬取的数据的规律,搜索汽车类别、厂商、品牌、车型、行驶里程、上牌日期、车身类型、燃油类型、变速箱、发动机功率、汽车有尚未修复的损坏、所在地区、报价类型、汽车售卖时间、二手车交易价格等。然后爬取所需页面的信息进行解析,将数据存储到数据库或者其它形式的文件。
2021-09-08 09:31:12
3189
12
原创 opencv图片倾斜度检测(二)利用摄像头进行实时检测图片中物体并画出坐标轴和倾斜度
是在检测图片的基础上进行加工的 详情可看opencv图片倾斜度检(一)对图片进行检测打开摄像头进行实时检测矩形轮廓,实时画出坐标轴坐标点和倾斜度,并且具有保存图片和利用plot单纯画出矩形的功能直接上全部代码 注释已经比较详细了如下:from matplotlib.cm import register_cmapimport matplotlib.pyplot as pltimport cv2import numpy as npimport imutilsimport timefrom s
2021-08-06 10:41:09
8085
10
原创 python数据分析案例简单实战项目(二)--疫情数据分析
项目背景2020 年 1 月新型冠状病毒(以下简称新冠)肺炎在极短时间内就在全球范围内大规模流行,据美国约翰斯·霍普金斯大学 11 月 8 日发布的新冠疫情最新统计数据显示,截至美国东部时间 11 月 8 日 11 时 24 分全球累计确诊人数超过 5000 万,死亡人数超过125 万。由于新冠病毒的传播速度快、致死率较高,世界卫生组织称新冠是百年一遇的人类公敌。自新冠肺炎爆发以来,面对社会对疫情信息的迫切需求,各级政府部门通过多种渠道及时发布第一手相关数据,许多组织和个人也迅速行动,利用多种分析手段为
2021-06-26 16:12:09
38141
65
原创 LazyLLM实战--金庸小说阅读辅助器
本文介绍了基于LazyLLM框架开发的金庸小说阅读辅助器项目。LazyLLM是一个开箱即用的AI应用框架,相比LangChain更注重快速部署和简洁API。项目采用RAG(检索增强生成)技术,通过Document类处理多种文档格式,使用Embedding模型生成文本向量,并利用Retriever组件实现语义检索。以《神雕侠侣》为例,展示了如何构建一个"边读边问"的阅读辅助系统,可快速检索小说内容并生成回答。该框架简化了AI应用开发流程,特别适合需要快速实现问答和检索功能的场景,为长篇文学作品阅读提供了智能化
2025-09-24 17:28:09
919
原创 Gemini-fullstack-langgraph-quickstart项目,一个很经典的Reflection模型
解析gemini-fullstack-langgraph-quickstart项目
2025-06-19 15:18:39
1144
原创 免费本地部署使用deepseek最新版 V3 0324(OpenRouter + ChatWise)
免费本地部署使用deepseek最新版 V3 0324(OpenRouter + ChatWise)
2025-03-26 14:33:10
877
原创 linux使用llamafactory微调大模型出现python -m bitsandbytes,CUDA Setup failed despite Gpu being available的解决办法
CUDA Setup failed despite Gpu being available,python -m bitsandbytes的解决办法
2025-03-20 16:52:14
710
原创 文本纠错--文本分割N-gram--Macbert模型的调用以及对返回结果的处理
输入一段可能带有错误信息的文字, 通过词典来检测其中可能错误的词。例如:有句子如下:中央人民政府驻澳门特别行政区联络办公室1日在机关大楼设灵堂有词典如下:中国人民,中央人民,澳门,西门检测时,根据词典可以得出句子中的中央人民可能为中国人民,澳门可能为西门,并返回结果。
2022-12-10 11:46:06
2536
1
原创 切分pdf并提取内容
pdf里面包含多篇报告,报告以文章编号结尾,部分存在文章连接。目的提取报告的标题,版号,版面,作者,文章编号,原文连接,以及文章主体部分大概文字。
2022-11-23 18:01:54
970
原创 python数据分析案例简单实战项目(二)--零售商品数据分析
项目目标1.根据附件1和附件2分析热销商品并可视化import pandas as pdimport matplotlib.pyplot as pltdata = pd.read_csv(r'C:\Users\Crown\Desktop\GoodsOrder.csv',encoding='gbk')sp = data['Goods'].value_counts()x=sp.index[:20]#取前20个商品的数据y=sp.values[:20]#取前20个商品的数据plt.bar(x,y)
2022-06-05 10:24:12
6362
10
原创 机器学习入门(二)--CASIA-HWDB(tensorflow)微调efficientNetB0实现手写字体的识别
1.准备数据集CASIA-HWDB2.x(offline)数据集下载地址:http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html将官网下载的HWDB数据进行解压,文件夹名称作为label。代码如下:注意分开test和trainimport structimport osfrom PIL import ImageDATA_PATH="HWDB1.1tst_gnt" #gnt数据文件路径IMG_PATH="test"#解析后的图片
2021-09-27 11:06:54
4514
4
原创 opencv图片倾斜度检测(一)对图片进行检测
利用opencv检测图片倾斜度1.利用最小矩阵函数minAreaRect得到旋转角度import cv2import numpy as npimport imutilsdef show(img):#显示函数 cv2.imshow('img',img) cv2.waitKey(0) cv2.destroyAllWindows()def bianyuan(img):#边缘处理 img_ = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换
2021-07-31 20:39:40
9331
14
原创 机器学习入门(一)--MNIST(pytorch)模型的构造以及使用(详细)
识别手写数字(MNIST数据集)model的构建1.加载必要的库import torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torchvision import datasets,transforms2.确定超参数BATCH_SIZE = 64#每批处理的数据 一次性多少个DEVICE = torch.device("cuda")#使用GPUEPOCH
2021-06-10 22:47:01
14148
6
原创 python数据分析案例简单实战项目(一)--供应链销售数据分析
项目背景作为供应链行业领航企业,怡亚通推动供应链改变中国,不仅是以先进的供应链思维与管理推动中国主要核心城市的商业快速发展,也是以完善的供应链服务布局、开放的新流通平台助力中国1-6线城市以及乡镇的流通业进步,振兴中国农村流通经济,以供应链改变中国的时代洪流,推动全中国的发展与进步。上一个十年,怡亚通紧握快消市场高速发展机遇,打造380平台,实现业务规模的千亿级发展;未来,怡亚通将在380平台优势基础上,以城市(怡亚通已建立的380服务网络)辐射农村、农村包围城市的思路,打造城乡380生活超市。A市客户
2021-06-05 15:02:58
6098
1
原创 python数据分析基础笔记
numpy:支持大量的维度数组与矩阵运算arrayimport numpy as np#导入库并别名x = np.array([[1,2],[2,3]],int)#创建int型的数组#array([[1, 2],# [2, 3]])x.ndim#维度 2x.shape = (1,3)#几行几列 可改变 x.shape可查看x.dtype#元素类型x.itemsize#每个元素多少字节np.arange(1,10,1)#array([1, 2, 3, 4, 5, 6, 7, 8,
2021-06-02 12:20:56
636
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅