蓝桥杯货物摆放问题详解

货物摆放问题

题目

小蓝有一个超大的仓库,可以摆放很多货物。现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、宽、高。小蓝希望所有的货物最终摆成一个大的长方体。即在长、宽、高的方向上分别堆 L、W、H 的货物,满足 $ n = L \times W \times H$。给定 n,请问有多少种堆放货物的方案满足要求。

例如,当 n = 4 时,有以下 6 种方案:1×1×4、1×2×2、1×4×1、2×1×2、2 × 2 × 1、4 × 1 × 1

请问,当 n = 2021041820210418 (注意有 16 位数字)时,总共有多少种方案?

提示:建议使用计算机编程解决问题。

答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。


分析

对于这类排列组合问题,最直接的解法就是利用暴力穷举法,利用三重循环遍历所有的可能,时间复杂度为 O ( n 3 ) O(n^3) O(n3)可注意此时的n有16位数,若用暴力穷举法未免有些恐怖。

观察条件 n = L × W × H n = L \times W \times H n=L×W×H题目是本质是求出其满足该式子的三个因数的排列数,那么如何找出这三个因数呢?

质因数算法原理——任何一个合数都可以写成几个质数相乘的形式

通过该理论,我们想到找出该合数的所有质因数,这便是质因数分解算法

质因数算法的步骤

假设有一个合数 n

  1. 当n = 0 或 n = 1时,停止质因数分解(无法分解)
  2. 从2 到 n \sqrt{n} n 中依次找到质数 ,假设质数为k。
  3. 当 n % k=0 $时, 表示该质数为合数的一个因数,提取该质数并将 n 除去 因数 k以得到新的n,继续执行第3步(质数k不变)
  4. 当n % k != 0 $时,表示该质数不是合数n的因数,转到第2步,寻找下一个质数

代码示例

#include <iostream>
#include <math.h>
typedef long long int ll;
const ll target = 2021041820210418;
int main(void)
{
  bool flag = true;
  ll n = target;
  for (int i = 2; i <= sqrt(target) && flag; i++)
  {
  
    flag = !(n == 1 || n == 0);
    while ((n % i)==0&&flag)
    {
      std::cout << i << " ";
      n /= i;
    }
    
  }
    return 0;
}

补充:有人可能会对上述代码有些疑问,因为前面提到从2到 n \sqrt{n} n 依次找到所有质数,但代码里却没有判断质数,i是从2 到 n \sqrt{n} n 的,存在例如4这样的不是质数的数。注意,代码里的while循环在暗中其实已经排除掉了非质数的数。假设循环除质数k,当用k对n取余不为0, 则用K的N( N ≥ 2 N\geq 2 N2)倍去对n进行取余操作必定不为0, (参考埃式筛法)

输出结果:2 3 3 3 17 131 2857 5882353

因此 n = 2 × 3 × 3 × 3 × 17 × 131 × 2857 × 5882353 n = 2\times 3\times 3\times 3\times 17\times 131\times 2857 \times5882353 n=2×3×3×3×17×131×2857×5882353

排列数计算

1、解法1——数学排列组合

回到条件 n = L × W × H n = L \times W \times H n=L×W×H

仔细看可以发现,该排列组合本质上就是将序号2、3、3……小球放到不同的数放置到A、B、C三个盒子里面,三个盒子的小球序号分别相乘得到L、W、H(当某一个盒子没有小球时,该盒子默认值为1)

举例

A. L = 2 × 3 L = 2\times 3 L=2×3(A盒子放了2、3号小球)

B. W = 3 × 3 × 17 × 131 × 2857 × 5882353 3\times 3\times 17\times 131\times 2857 \times5882353 3×3×17×131×2857×5882353(放了3、3、17、131……号小球)

C. H = 1 H = 1 H=1(没放小球)

这样以来就简单许多,每个小球可选择放在3个盒子中的任意一个,问题就转化为了将不同小球放在3个不同盒子的排列组合问题

但是,这里有个坑——存在3个相同序号的3号小球,需要单独考虑3个3号小球的放置情况。

考虑3个3号小球的放置情况

  1. 将3个小球放在同一个盒子里,有3种可能

  2. 将3个小球分别放在两个盒子里,其实可以看做把9(3*3)号小球和3号小球放在两个盒子里面,有 A 2 3 = 6 A^3_2 = 6 A23=6种可能

  3. 将3个小球分别放在三个盒子里面,有1种可能

3个3号小球的放置可能性为:3+6+1 = 10

综上,排列数的结果为:
3 × 3 × 3 × 3 × 3 × 10 = 2430 3 \times 3\times 3\times3\times3\times10 = 2430 3×3×3×3×3×10=2430

3、解法2——枚举法

这里不多说了,主要是用3重循环把 2 3 3 3 17 131 2857 5882353用程序的方法进行排列组合

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值