what(是什么)
反向传播算法(Backpropagation)是一种用于训练人工神经网络的常见方法。它通过计算网络预测与实际结果之间的误差,然后反向传播这个误差来调整网络中每个权重的值,从而逐步优化网络的学习过程

where(用在哪)
绝大多数的神经网络都会使用反向传播算法进行网络权重以及阈值的更新,简单列举部分典型的使用场景如下
How(原理&&怎么用)
原理以及推导过程
下面重点介绍反向传播算法的推导流程

假设有以上简单的神经网路模型,分为输入层、隐藏层、输出层。其中隐藏层包括4个神经元、输出层包括2个神经元。
假设输出层的两个神经元为 y 1 y_1 y1, y 2 y_2 y2,其激活阈值分别为 β \beta β, γ \gamma γ,两个神经元的输入分别为 y 1 i n y_{1in} y1in, y 2 i n y_{2in} y2in,输出分别为 y 1 ^ \hat{y_1} y1^和 y 2 ^ \hat{y_2} y2^。
假设隐藏层四个神经元为 h 1 h_1 h1, h 2 h_2 h2, h 3 h_3 h3, h 4 h_4 h4,其中 h 1 h_1 h1的激活阈值为 δ \delta δ,神经元 h 1 h_1 h1的输入值为 h i n h_{in} hin,输出值为 h o u t h_{out} hout。
假设输入层两个神经元为 x 1 x_1 x1, x 2 x_2 x2,其中神经元 x 1 x_1 x1的输出为 x o u t x_{out} xout。
假设神经元 x 1 x_1 x1到神经元 h 1 h_1 h1的连接权重为 W 11 W_{11} W11,神经元 h 1 h_1 h1到神经元 y 1 y_1 y1

最低0.47元/天 解锁文章
683

被折叠的 条评论
为什么被折叠?



