cf1276 D. Tree Elimination

10 篇文章 0 订阅
这篇博客讨论了如何解决CF1276D问题,即树消除策略。首先,它从特殊情况开始,分析一条链上的问题,通过动态规划给出解决方案。接着,扩展到直线上的情况,引入多维DP来处理边的乱序。最后,将这种方法推广到树形结构,自下而上地进行DP,解释了如何根据边的时间戳对子树进行决策计数。博客还包含了代码实现。
摘要由CSDN通过智能技术生成

链接

点击跳转

先考虑一条链上的特殊情形

如果是一条链,而且边的顺序是从后往前,那么我很容易写出 d p dp dp

定义 f i , 0 / 1 f_{i,0/1} fi,0/1为前 i i i个位置已经决策完了,并且最后一个点有没有被选,的方案数。

转移就是:

f i , 0 = f i − 1 , 0 + f i − 1 , 1 f_{i,0}=f_{i-1,0}+f_{i-1,1} fi,0=fi1,0+fi1,1
f i , 1 = f i − 1 , 0 f_{i,1}=f_{i-1,0} fi,1=fi1,0

再考虑一条直线上的一般情形

如果我给出边的顺序不是按照从前往后,而是乱序的,那么第 i i i条边所面临的决策也会受到后面的影响

看似有后效性,但其实会发现这个题目中决策只会影响到相邻的位置,因此有一个套路就是,多开一维记录后面对前面的影响

f i , 0 / 1 , 0 / 1 f_{i,0/1,0/1} fi,0/1,0/1表示决策第 i i i个位置前, i i i线段的右端点是 0 / 1 0/1 0/1,第 i i i个位置决策后, i i i线段的右端点是 0 / 1 0/1 0/1,的方案数。

由于 i , 1 , 0 i,1,0 i,1,0这个状态无效因此我把它丢掉

f i , 0 , f i , 1 , f i , 2 f_{i,0},f_{i,1},f_{i,2} fi,0,fi,1,fi,2依次表示 ( 0 → 0 ) , ( 0 → 1 ) , ( 1 → 1 ) (0 \rightarrow 0),(0 \rightarrow 1),(1 \rightarrow 1) (00),(01),(11)的方案数

假设第 i i i条边的时间戳是 t i t_i ti

那么:
t i > t i + 1 t_i>t_{i+1} ti>ti+1时,
f i , 0 = f i + 1 , 0 + f i + 1 , 1 f_{i,0} = f_{i+1,0} + f_{i+1,1} fi,0=fi+1,0+fi+1,1
f i , 1 = f i + 1 , 0 f_{i,1} = f_{i+1,0} fi,1=fi+1,0
f i , 2 = f i + 1 , 0 f_{i,2} = f_{i+1,0} fi,2=fi+1,0

t i < t i + 1 t_i<t_{i+1} ti<ti+1时,
f i , 0 = f i + 1 , 2 f_{i,0} = f_{i+1,2} fi,0=fi+1,2
f i , 1 = f i + 1 , 0 + f i + 1 , 1 f_{i,1} = f_{i+1,0} + f_{i+1,1} fi,1=fi+1,0+fi+1,1
f i , 2 = f i + 1 , 0 + f i + 1 , 1 f_{i,2} = f_{i+1,0} + f_{i+1,1} fi,2=fi+1,0+fi+1,1

最后推广到树上

推广到树上之后,就变成自下而上的 d p dp dp,叶子节点的初始状态直接就是 ( 1 , 1 , 1 ) (1,1,1) (1,1,1),而 d p i , 0 / 1 / 2 dp_{i,0/1/2} dpi,0/1/2的含义也变成了“子树中边的决策的方案数”

做法也有一点变化,就是把与 u u u直接相连的边按照时间戳排个序,转移的时候基本思想还是不变,请读者自行瞎搞搞应该就能出来了

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 200010
#define maxe 400010
#define cl(x) memset(x,0,sizeof(x))
#define rep(_,__) for(_=1;_<=(__);_++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define mod 998244353ll
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
vector<ll> to[maxn];
ll n, dp[maxn][3], p0[maxn], p1[maxn], p2[maxn];
void dfs(ll fa, ll u)
{
    ll i, j, sz=to[u].size()-1, cnt;

    if(sz==0)
    {
        dp[u][0]=dp[u][1]=dp[u][2]=1;
        return;
    }

    for(auto v:to[u])if(v!=fa)dfs(u,v);

    p0[0]=1;
    j=0;
    for(auto v:to[u])if(v!=fa)
    {
        p0[j+1]=p0[j]*dp[v][0]%mod;
        p1[j+1]=dp[v][1];
        j++;
    }

    p2[sz+1]=1;
    j=sz;
    for(auto it=to[u].rbegin();it!=to[u].rend();it++)
    {
        auto v=*it;
        if(v!=fa)
        {
            p2[j]=p2[j+1]*dp[v][2]%mod;
            j--;
        }
    }

    cnt=0;
    for(auto v:to[u])if(v!=fa)cnt++;else break;

    rep(i,cnt)
        (dp[u][0]+=p0[i-1]*p1[i]%mod*p2[i+1])%=mod;
    (dp[u][0]+=p0[cnt]*p2[cnt+1])%=mod;
    
    for(i=cnt+1;i<=sz;i++)
        (dp[u][1]+=p0[i-1]*p1[i]%mod*p2[i+1])%=mod;
    (dp[u][1]+=p0[sz])%=mod;

    rep(i,sz)
        (dp[u][2]+=p0[i-1]*p1[i]%mod*p2[i+1])%=mod;
    (dp[u][2]+=p0[sz])%=mod;
}
int main()
{
    ll i;
    n=read();
    to[1].emb(n+1);
    to[n+1].emb(1);
    rep(i,n-1)
    {
        auto u=read(), v=read();
        to[u].emb(v);
        to[v].emb(u);
    }
    dfs(n+1,1);
    printf("%lld",dp[1][2]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值