bzoj4805: 欧拉函数求和(第二次做)

链接

https://www.lydsy.com/JudgeOnline/problem.php?id=4805

做法

φ ( x ) \varphi(x) φ(x)的前缀和为 S ( x ) S(x) S(x)
有一个关于欧拉函数的性质:
∑ d ∣ n φ ( d ) = n \sum_{d|n}\varphi(d)=n dnφ(d)=n
这样来做:
n ( n + 1 ) 2 = ∑ i = 1 n ∑ d ∣ i φ ( d ) \frac{n(n+1)}{2}=\sum_{i=1}^n\sum_{d|i}\varphi(d) 2n(n+1)=i=1ndiφ(d)
到这里很多同学会把 d d d提前,最终化简成这个样子:
∑ d = 1 n φ ( d ) ⌊ n d ⌋ \sum_{d=1}^n\varphi(d)\lfloor\frac{n}{d}\rfloor d=1nφ(d)dn
上面这个式子对我们求前缀和似乎没有什么帮助,以下介绍另一种技巧:
n ( n + 1 ) 2 = ∑ k = 1 n ∑ d = 1 ⌊ n k ⌋ φ ( d ) = ∑ k = 1 n S ( ⌊ n k ⌋ ) \frac{n(n+1)}{2}=\sum_{k=1}^n\sum_{d=1}^{\lfloor\frac{n}{k}\rfloor}\varphi(d)=\sum_{k=1}^nS(\lfloor\frac{n}{k}\rfloor) 2n(n+1)=k=1nd=1knφ(d)=k=1nS(kn)
其中 k k k代表了原式中 i i i d d d的几倍
S ( n ) = n ( n + 1 ) 2 − ∑ k = 2 n S ( ⌊ n k ⌋ ) S(n)=\frac{n(n+1)}{2}-\sum_{k=2}^nS(\lfloor\frac{n}{k}\rfloor) S(n)=2n(n+1)k=2nS(kn)
到这里,如果直接用类似记忆化搜索的方式求解,时间复杂度是 O ( n 3 4 ) O(n^\frac{3}{4}) O(n43)的,如果预处理 S ( 0 ) S(0) S(0) S ( n 2 3 ) S(n^\frac{2}{3}) S(n32),最终的复杂度是 O ( n 2 3 ) O(n^\frac{2}{3}) O(n32)
时间复杂度的计算可能要用到大学知识,以我现在的水平还无法理解。

实践过程中的问题

显然我们预处理使用线性筛,这一部分的和直接用数组连续存储即可,但是我们在记忆化的过程中,当 x x x大于 n 2 3 n^\frac{2}{3} n32时,肯定没法用 S [ x ] S[x] S[x]直接保存。注意到 ⌊ n x ⌋ \lfloor\frac{n}{x}\rfloor xn x ∈ [ n , n ] x\in[\sqrt n,n] x[n ,n]时有最多 n \sqrt n n 个取值,因此可以开一个数量级在 n \sqrt n n 的数组来保存这些值,实际的 S ( x ) S(x) S(x)对应的下标为 n / x n/x n/x。这样为什么对呢?多个 x x x不会对应一个值吗?经过考虑,发现我们具体在做的时候是分块的,用到的 x x x一定都是 n / k n/k n/k的形式,而 k k k是这个块的左端点 ,那么 n / x = n / ( n / k ) n/x=n/(n/k) n/x=n/(n/k)就对应了这个块的右端点,而 n / x n/x n/x本身被分成哪些块是一定的。计算过程中可能出现 ⌊ n a ⌋ = ⌊ n b ⌋ \lfloor\frac{n}{a}\rfloor=\lfloor\frac{n}{b}\rfloor an=bn,对应的分母不同,但取整后的结果是一样的,这个值会被存在 S ( n / ( n / a ) ) S(n/(n/a)) S(n/(n/a))中,也就是 S ( n / ( n / b ) ) S(n/(n/b)) S(n/(n/b))中。

代码

//杜教筛
#include <cstdio>
#include <algorithm>
#define ll long long
#define maxn 1587410
using namespace std;
ll phi[maxn], f[maxn], prime[maxn], N;
bool mark[maxn];
void init()
{
	ll i, j, t;
	phi[1]=1;
	for(i=2;i<maxn;i++)
	{
		if(!mark[i])prime[++*prime]=i, phi[i]=i-1;
		for(j=1;j<=*prime and i*prime[j]<maxn;j++)
		{
			mark[t=i*prime[j]]=1;
			if(i%prime[j]==0){phi[t]=phi[i]*prime[j];break;}
			phi[t]=phi[i]*(prime[j]-1);
		}
	}
	for(i=1;i<maxn;i++)phi[i]+=phi[i-1];
}
ll getf(ll x){return x<maxn?phi[x]:f[N/x];}
void calc(ll  n)
{
	if(n<maxn or f[N/n])return;
	ll &s=f[N/n], k, last;
	s=n*(n+1)>>1;
	for(k=2;k<=n;k=last+1)
	{
		last=n/(n/k);
		calc(n/k);
		s-=getf(n/k)*(last-k+1);
	}
}
int main()
{
	init();
	scanf("%lld",&N);
	calc(N);
	printf("%lld",getf(N));
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值