hdu3670 A Sequence of Numbers

链接

http://acm.hdu.edu.cn/showproblem.php?pid=3670

题解

这题不太好做
我首先是写了写看到一些规律
比如当查询 Q   1 Q\ 1 Q 1的时候,可以发现,当总的修改值为奇数的时候查询结果是奇数的个数,当总的修改值为偶数的时候查询的结果是偶数的个数,那么这个就很好做
然后考虑 Q   2 Q\ 2 Q 2有没有类似的规律,这个要稍微画一画图,然后就确实发现一些规律,按照总修改值对 4 4 4取模的值,查询的结果分为四种情况。然后我考虑算贡献,每种数字对 Q   2 Q\ 2 Q 2的影响和 d d d有关(这里 d d d就是总修改值对 4 4 4取模的结果),而且会发现这种贡献是连续的,比如数字 1 1 1 Q   2 Q\ 2 Q 2的贡献就是:当 d = 1 d=1 d=1 d = 2 d=2 d=2时, Q   2 Q\ 2 Q 2的查询结果才会包含 c n t 1 cnt_1 cnt1(这里 c n t 1 cnt_1 cnt1)表示原序列中 1 1 1的个数

代码

#include <bits/stdc++.h>
#define maxn (65536+10)
#define cl(x) memset(x,0,sizeof(x))
using namespace std;
int cnt[maxn], N, f[20][maxn];
int read(int x=0)
{
    int c, f=1;
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-48;
    return f*x;
}
void init()
{
    int i, j, mask, l, pos;
    cl(cnt), cl(f);
    for(i=1;i<=N;i++)cnt[read()]++;
    for(i=0;i<65536;i++)
    {
        for(j=0;j<16;j++)
        {
            mask=(1<<j+1)-1;
            if( (i&mask) > (1<<j) )
            {
                f[j][0] += cnt[i];
                f[j][mask-(i&mask)+1]-=cnt[i];
                f[j][mask-(i&mask)+(1<<j)+1]+=cnt[i];
            }
            else
            {
                f[j][(1<<j)-(i&mask)]+=cnt[i];
                f[j][(1<<j)-(i&mask)+(1<<j)]-=cnt[i];
            }
        }
    }
    for(j=0;j<16;j++)for(i=1;i<(1<<j+1);i++)f[j][i]+=f[j][i-1];
}
int main()
{
    char s[10];
    int d, kase(0);
    long long ans;
    while( (N=read()) != -1 )
    {
        init();
        d=0;
        ans=0;
        while(1)
        {
            scanf("%s",s);
            if(s[0]=='Q')
            {
                auto x=read();
                ans += f[x][d&((1<<x+1)-1)];
            }
            else if(s[0]=='C')
            {
                auto x=read();
                d += x&65535;
                d &= 65535;
            }
            else break;
        }
        printf("Case %d: %lld\n",++kase,ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值