K-means聚类算法原理与实现

本文介绍了K-means聚类算法的原理和实现,包括无监督学习概念、算法流程、优缺点以及在lnstacart市场篮子分析中的应用。K-means通过选择初始中心点,依据距离划分聚类,适用于数据集的初步分类,但易受初始中心点选择和异常值影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无监督学习

首先这类算法是属于典型的无监督学习算法,比如 PCA 将维等等。这类算法在先前的机器学习文章过程中有提到,但是我自己没有去具体分析它的实现,只是简单地去使用sklearn去做一些应用去了。那么要先讲清楚K-means那么必然是要先搞清楚无监督的意思,我这里将使用最简单的语言来尽可能地去描述复杂算法(虽然这个K-means其实也不复杂,难的其实我认为还是对现实生活中各种参数的量化,建模,也就是如何得到合理高效的数据集。例如,如何寻找一个数据集来通过KNN算法来分析妹子对男孩子的喜好进行分类,女孩子喜欢男孩子的哪几种特征,从而提高男性魅力,实现科学脱单。当然这可能不符合工程伦理,同时创建这样一个数据集有着诸多困难)那么关于无监督学习:

非监督式学习是一种机器学习的方式,并不需要人力来输入标签。 它是监督式学习和强化学习等策略之外的一种选择。 在监督式学习中,典型的任务是分类和回归分析,且需要使用到人工预先准备好的范例(base)。 … 无监督学习主要是针对(有)监督学习和强化学习而言的,可以通过对输入的解释将强化学习、监督学习和无监督学习区分开来。

这个是百科上的定义,那么实际举个例子就是这样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Huterox

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值