背景
在分类模型中,预测概率不仅是结果,更是模型决策的关键依据。为了更直观地理解这些概率分布,3D可视化提供了一种生动的展示方式,本文通过3D概率分布图,直观展示分类模型的预测概率
代码实现
基于时间序列的3D分布可视化
import datetime
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import pandas as pd
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams['axes.unicode_minus'] = False
# 示例数据,用于演示
num_samples = 100 # 时间间隔的数量(样本数量)
categories = ['Class A', 'Class B', 'Class C'] # 示例类别名称
probability_df = pd.DataFrame(
np.random.rand(num_samples, len(categories)),
columns=categories
)
# 每个类别的颜色
colors = ['#FF9999', '#99CCFF', '#99FF99'] # 柔和的红色、蓝色和绿色
# 生成时间戳,用作x轴(模拟时间间隔)
start_time = datetime.datetime.now() # 当前时间作为起点
time_stamps = [start_time + datetime.timedelta(minutes=5 * i) for i in range(num_samples)] # 每隔5分钟生成一个时间点
time_labels = [ts.strftime('%H:%M') for ts in time_stamps] # 格式化时间戳为“小时:分钟”形式
# 创建图形和3D坐标轴
fig = plt.figure(figsize=(20, 20)) # 设置图形大小
ax = fig.add_subplot(111, projection='3d') # 添加3D子图
# 将x值设置为时间索引
x = np.arange(probability_df.shape[0]) # x表示时间序列的索引
# 为每个类别绘制概率分布的曲面图
for i, col in enumerate(probability_df.columns):
y = np.full_like(x, i) # y值固定为类别的索引
z = probability_df[col].values
# 定义多边形的顶点
verts = [[(x[0], y[0], 0)] + [(x[j], y[j], z[j]) for j in range(len(x))] + [(x[-1], y[-1], 0)]]
poly = Poly3DCollection(
verts, # 多边形顶点列表
facecolors=colors[i % len(colors)], # 多边形的填充颜色
edgecolors=colors[i % len(colors)], # 多边形的边界颜色
alpha=0.7, # 透明度
lw=1.5 # 边框宽度
)
ax.add_collection3d(poly) # 将多边形添加到3D坐标轴
# 设置坐标轴的范围和标签
ax.set_xlim(