从模型构建到在线部署:基于Stacking集成模型的全流程实现与SHAP可视化

图片

背景

在机器学习和数据科学领域,构建高效的预测模型只是第一步,如何将模型成果落地应用至关重要,借助在线部署工具,可以实现模型的实时预测与可视化交互,为用户提供直观的分析支持。本次实践以Stacking回归模型为核心,结合SHAP值分析特征重要性,并通过Streamlit搭建交互式Web应用关注微信公众号:Python机器学习AI

图片

代码实现

模型构建


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt 
import warnings
warnings.filterwarnings("ignore")

plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams['axes.unicode_minus'] = False
df = pd.read_excel('2024-11-27公众号Python机器学习AI.xlsx')

from sklearn.model_selection import train_test_split, KFold

X = df.drop(['Y'],axis=1)
y = df['Y']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
                                                    random_state=42)
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor, StackingRegressor
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from catboost import CatBoostRegressor
from sklearn.linear_model import LinearRegression

# 定义一级学习器
base_learners = [
    ("RF", RandomForestRegressor(n_estimators=100, random_state=42)),
    ("XGB", XGBRegressor(n_estimators=100, random_state=42, verbosity=0)),
    ("LGBM", LGBMRegressor(n_estimators=100, random_state=42, verbose=-1)),
    ("GBM", GradientBoostingRegressor(n_estimators=100, random_state=42)),
    ("AdaBoost", AdaBoostRegressor(n_estimators=100, random_state=42)),
    ("CatBoost", CatBoostRegressor(n_estimator
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python机器学习AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值