[bzoj1063][NOI2008]道路设计

1063: [Noi2008]道路设计

Time Limit: 20 Sec Memory Limit: 162 MB
Submit: 931 Solved: 509
[Submit][Status][Discuss]
Description

  Z国坐落于遥远而又神奇的东方半岛上,在小Z的统治时代公路成为这里主要的交通手段。Z国共有n座城市,一
些城市之间由双向的公路所连接。非常神奇的是Z国的每个城市所处的经度都不相同,并且最多只和一个位于它东
边的城市直接通过公路相连。Z国的首都是Z国政治经济文化旅游的中心,每天都有成千上万的人从Z国的其他城市
涌向首都。为了使Z国的交通更加便利顺畅,小Z决定在Z国的公路系统中确定若干条规划路线,将其中的公路全部
改建为铁路。我们定义每条规划路线为一个长度大于1的城市序列,每个城市在该序列中最多出现一次,序列中相
邻的城市之间由公路直接相连(待改建为铁路)。并且,每个城市最多只能出现在一条规划路线中,也就是说,任意
两条规划路线不能有公共部分。当然在一般情况下是不可能将所有的公路修建为铁路的,因此从有些城市出发去往
首都依然需要通过乘坐长途汽车,而长途汽车只往返于公路连接的相邻的城市之间,因此从某个城市出发可能需要
不断地换乘长途汽车和火车才能到达首都。我们定义一个城市的“不便利值”为从它出发到首都需要乘坐的长途汽
车的次数,而Z国的交通系统的“不便利值”为所有城市的不便利值的最大值,很明显首都的“不便利值”为0。小
Z想知道如何确定规划路线修建铁路使得Z国的交通系统的“不便利值”最小,以及有多少种不同的规划路线的选择
方案使得“不便利值”达到最小。当然方案总数可能非常大,小Z只关心这个天文数字modQ后的值。注意:规划路
线1-2-3和规划路线3-2-1是等价的,即将一条规划路线翻转依然认为是等价的。两个方案不同当且仅当其中一个方
案中存在一条规划路线不属于另一个方案。

Input

  第一行包含三个正整数N、M、Q,其中N表示城市个数,M表示公路总数,N个城市从1~N编号,其中编号为1的是首都
。Q表示上文提到的设计路线的方法总数的模数。接下来M行,每行两个不同的正数ai、bi(1≤ai,bi≤N)表示有一条
公路连接城市ai和城市bi。输入数据保证一条公路只出现一次。

Output

  包含两行。第一行为一个整数,表示最小的“不便利值”。第二行为一个整数,表示使“不便利值”达到最小时
不同的设计路线的方法总数modQ的值。如果某个城市无法到达首都,则输出两行-1。

Sample Input

5 4 100

1 2

4 5

1 3

4 1

Sample Output

1

10

HINT

  以下样例中是10种设计路线的方法:

(1)4-5

(2)1-4-5

(3)4-5,1-2

(4)4-5,1-3

(5)4-5,2-1-3

(6)2-1-4-5

(7)3-1-4-5

(8)1-4

(9)2-1-4

(10)3-1-4

【数据规模和约定】

对于100%的数据,满足1≤N,M≤100000,1≤Q≤120000000。

最多只和一个位于它东边的城市相连,说明这是一个树。
那答案的最大值不会超过树的深度。但其实这个最大值会很小。
因为每次减小的时候我们肯定都是要找一个长的链减小,然后从剩下的短的链里也继续这样做。这个过程其实就相当于在树链剖分,我们知道树链剖分的上界是 logn 的,所以答案也是 logn 级别的。
这样的话设 f[i][j][3] 表示 i 这个点的答案为j时,有 0,1 2 个子树和根相连时的方案数。
做到每一个儿子的时候更新一下当前的根的答案就行了。
复杂度:nlogn

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define LL long long
const int N=100010;
LL f[N][20][3];
struct S{int st,en;}aa[N<<1];
int n,m,Mod,tot,point[N],next[N<<1];
inline int in(){
    int x=0;char ch=getchar();
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x;
}
inline void add(int x,int y){
    next[++tot]=point[x];point[x]=tot;
    aa[tot].st=x;aa[tot].en=y;
    next[++tot]=point[y];point[y]=tot;
    aa[tot].st=y;aa[tot].en=x;
}
inline LL calc(LL x){
    if(x&&x%Mod==0) return Mod;
    else return x%Mod;
}
inline void dp(int x,int last){
    int i,j;
    for(i=0;i<20;++i) f[x][i][0]=1;
    for(i=point[x];i;i=next[i])
        if(aa[i].en!=last){
            dp(aa[i].en,x);
            for(j=0;j<20;++j){
                LL o0=calc(f[aa[i].en][j][0]+f[aa[i].en][j][1]);
                LL o1=(j?(calc(f[aa[i].en][j-1][0]+f[aa[i].en][j-1][1]+f[aa[i].en][j-1][2])):0);
                f[x][j][2]=calc(f[x][j][1]*o0+f[x][j][2]*o1);
                f[x][j][1]=calc(f[x][j][0]*o0+f[x][j][1]*o1);
                f[x][j][0]=calc(f[x][j][0]*o1);
            }
        }
}
int main(){
    int i,x,y;
    n=in();m=in();Mod=in();
    if(m<n-1){
        printf("-1\n-1\n");
        return 0;
    }
    for(i=1;i<=m;++i){
        x=in();y=in();
        add(x,y);
    }
    dp(1,0);
    for(i=0;i<20;++i)
        if(f[1][i][0]+f[1][i][1]+f[1][i][2]>0){
            printf("%d\n%d\n",i,(int)(f[1][i][0]+f[1][i][1]+f[1][i][2])%Mod);
            return 0;
        }
    printf("-1\n-1\n");
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值