快速排序:
快速排序在基本逆序的情况下时间复杂度时O(n*n),虽然他在最坏情况下效率很差.但是快排在实际应用中通常是最好的选择,应为他的平均性能是最好的.他的期望时间复杂度时
O(n lgn), 而且O(nlgn)中的常数因子很小, 另外他还能进行原址排序,甚至在虚存环境中也能很好的工作.
快速排序使用了分治思想.
#include<iostream>
using namespace std;
void exchange(int *a,int *b)
{
int t=*a;
*a=*b;
*b=t;
}
int partition(int *a,int left,int right)
{
int key=a[right];
int i=left-1;
int j=left;
for(;j<=right-1;++j)
{
if(a[j]<a[right])
{
++i;
exchange(&a[i],&a[j]);
}
}
exchange(&a[i+1],&a[right]);
return i+1;
}
void quick_sort(int *a,int left,int right)
{
if(left<right)
{
int q=partition(a,left,right);
quick_sort(a,left,q-1);
quick_sort(a,q+1,right);
}
}
void output(int *a,int len)
{
for(int i=0;i<len;++i)
cout<<a[i]<<" ";
cout<<endl;
}
int main()
{
int a[8]={2,8,7,1,3,5,6,4};
quick_sort(a,0,7);
output(a,8);
return 0;
}
素组元素最坏情况划分:
快排在数组元素基本逆序和基本正序的情况下partition的次数是相同的是O(n*n), 递归式是T(n)=T(n-1)+T(0)+O(n).
数组元素在最好情况下划分:
每次partition的划分比例大概是是n/2和n/2 , 递归式是: T(n)=2T(n/2)+O(n).由主定理第二条知道 时间复杂度是O(n lg n) .
快排的随机化版本:
基本上和上面的一样,不同之处是:在parttition()函数里面主元是随机出来的,这就避免了当数据基本有序是快排的时间复杂度为O(n*n),这样保证每次划分时基本平衡的.
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
using namespace std;
void exchange(int *a,int *b)
{
int t=*a;
*a=*b;
*b=t;
}
int partition(int *a,int left,int right)//快排的随机化版本
{
srand((int)time(0));//随机出主元
int rand_key=rand()%(right-left+1)+left;//
exchange(&a[rand_key],&a[right]);//
int key=a[right];
int i=left-1;
int j=left;
for(;j<=right-1;++j)
{
if(a[j]<a[right])
{
++i;
exchange(&a[i],&a[j]);
}
}
exchange(&a[i+1],&a[right]);
return i+1;
}
void quick_sort(int *a,int left,int right)
{
if(left<right)
{
int q=partition(a,left,right);
quick_sort(a,left,q-1);
quick_sort(a,q+1,right);
}
}
void output(int *a,int len)
{
for(int i=0;i<len;++i)
cout<<a[i]<<" ";
cout<<endl;
}
int main()
{
int a[8]={2,8,7,1,3,5,6,4};
quick_sort(a,0,7);
output(a,8);
return 0;
}