ChatGPT使用方法的调研
参考文章:ChatGPT应用场景汇总
这篇文章详细的介绍了相关应用场景的用法等操作。
ChatGPT作为一个语言模型,其免费版本3.5只可以进行对话式交互,因此在此种情况下没有找到可以直接利用ChatGPT进行机器学习任务的方法,更多的是使用ChatGPT的输出作为建议进行相关操作。
DriveGPT
在相关调研中发现,DriveGPT是一种在ChatGPT的基础上用于自动驾驶的改进版本。
有一篇文章似乎详细的分析了DriveGPT:毫末的Drive GPT是什么?蹭热点还是真有料?
7.5的报道中称:
DriveGPT的底层模型与ChatGPT一样,都采用了生成式预训练模型架构,使用了大规模无监督的数据进行初始模型的生成,也都采用了Prompt微调方式和RLHF人类反馈强化学习的方式进行模型效果的优化;二者的不同之处在于,ChatGPT输入输出的自然语言的文本,而DriveGPT输入输出分别是历史场景序列和生成的未来场景序列,ChatGPT主要用于自然语言处理领域,而DriveGPT主要用于自动驾驶领域。
同时DriveGPT相比于传统的自动驾驶有如下解释优点:贺翔解释说:“我们希望通过大模型非常强大的泛化能力,能够大规模提升自动驾驶对于corner case的处理能力,有了这种能力之后,自动驾驶可以去任何地方,任何路况,自动驾驶的范围能处理的场景可能比现在大得多。”
可以理解为,使用大模型训练后的DriveGPT借助大型模型的泛化能力,自动驾驶系统可以适应各种地点和路况,而不仅仅局限于已经训练和测试过的典型情况。这样一来,自动驾驶的应用范围将得到显著扩大,能够处理的场景可能比现在要广泛得多。
所以,可以理解为使用大规模无监督数据进行初始模型生成,采用RLHF等方法进行模型优化,最终生成自己的GPT。
(感觉这玩意不亚于训练一个ChatGPT出来了(z~z))
直接用API调用ChatGPT
使用如下方法进行API的调用:
-
集成ChatGPT:首先,你需要将ChatGPT集成到你的Python游戏项目中。你可以使用OpenAI的API来与ChatGPT进行通信,或者使用开源的GPT实现,如GPT-3.5-turbo的Python包
openai
。 -
确定对话交互方式:确定游戏中与ChatGPT的对话交互方式。你可以将游戏中的情境、问题或请求发送给ChatGPT,并接收其回应。这可以通过将游戏状态、玩家行动或其他相关信息作为输入发送给ChatGPT,并解析和处理其输出来实现。
-
解析ChatGPT的回应:ChatGPT的回应可能是一段文本,你需要解析并从中提取有用的信息。这可能涉及到文本分析、语义理解和意图识别等技术,以便在游戏中采取相应的行动。
-
应用ChatGPT的建议:根据ChatGPT的回应,将其建议应用于游戏中。这可能包括调整游戏状态、生成对手行动、提供玩家建议或进行其他相关方面的处理。
-
迭代和优化:根据实际应用中的反馈和结果,不断迭代和优化ChatGPT的集成和应用方式,以提高游戏的体验和效果。
这种方法通过将chatgpt集成在代码中,从而实现代码运行过程中不断询问ChatGPT从而进行相关的任务动作修改等操作。
但有几个问题:
- 集成ChatGPT的话会不会大幅度影响运行速度?
- 对于网络的需求是否和网页版一样,能否在任何网络状态下进行问答操作,还是必须进行科学上网呢?
- ChatGPT得到的回答还需要解析,这个解析需要从具体任务出发,如何理解ChatGPT的回答即如何理解自然语言并将其处理为可执行的代码部分?
- 理解自然语言后,如何在程序运行过程中实时将得到的结果进行专家知识转换即作为专家知识进行机器学习的训练过程?
(未完待续。。。)