神必作业
这个分成五个一组就很神奇,盲猜是什么东西求极值求出来的,作业里又求分成七个,分三个的复杂度分析。
七个
- 分成 ⌊ n / 7 ⌋ \lfloor n/7\rfloor ⌊n/7⌋组,取每组中位数的中位数。那么中位数较小的组有 ⌊ n / 7 ⌋ − 1 2 \frac{\lfloor n/7\rfloor-1}{2} 2⌊n/7⌋−1组,至少有 3 2 ( ⌊ n / 7 ⌋ − 1 ) \frac{3}{2}(\lfloor n/7\rfloor-1) 23(⌊n/7⌋−1)个数会小于枢轴量,再加上 ⌊ n / 7 ⌋ − 1 2 \frac{\lfloor n/7\rfloor-1}{2} 2⌊n/7⌋−1个中位数,那么左边有 2 ( ⌊ n / 7 ⌋ − 1 ) 2(\lfloor n/7\rfloor-1) 2(⌊n/7⌋−1)个数。
- T ( n ) = T ( n / 7 ) + T ( 5 n / 7 ) + O ( n ) T(n) = T(n/7)+T(5n/7) +O(n) T(n)=T(n/7)+T(5n/7)+O(n) 线性算法
三个
- 分成 ⌊ n / 3 ⌋ \lfloor n/3\rfloor ⌊n/3⌋组,取每组中位数的中位数。那么中位数较小的组有 ⌊ n / 3 ⌋ − 1 2 \frac{\lfloor n/3\rfloor-1}{2} 2⌊n/3⌋−1组,至少有 1 2 ( ⌊ n / 3 ⌋ − 1 ) \frac{1}{2}(\lfloor n/3\rfloor-1) 21(⌊n/3⌋−1)个数会小于枢轴量,再加上 ⌊ n / 3 ⌋ − 1 2 \frac{\lfloor n/3\rfloor-1}{2} 2⌊n/3⌋−1个中位数,那么左边有 ( ⌊ n / 3 ⌋ − 1 ) (\lfloor n/3\rfloor-1) (⌊n/3⌋−1)个数。
- T ( n ) = T ( n / 3 ) + T ( 2 n / 3 ) + O ( n ) T(n) = T(n/3)+T(2n/3) +O(n) T(n)=T(n/3)+T(2n/3)+O(n) 非线性算法
如何解递归式不知道咩