群智感知-MobiSys2012-论文简析:基于移动电话的参与式感知预测公交车的到站时间

本文分析了一篇2012年的MobiSys论文,提出利用手机的麦克风和加速度计,结合群智感知,预测公交车到站时间。系统通过检测特定音频信号和加速度变化来判断用户是否在公交车上,收集信号塔ID以识别公交路线,并使用Smith-Waterman算法进行序列匹配。该方法降低了依赖GPS的能耗,为预测系统提供了低成本解决方案。
摘要由CSDN通过智能技术生成

MobiSys2012论文简析:基于移动电话的参与式感知预测公交车的到站时间

论文思想

  • 利用手机+群智感知的思想以节能低开销(非用户定位)的方法预测公交车🚌的到达时间;
  • 三个部分:
    Sharing user(在公交车上且愿意分享的乘客)、Querying user(查询公交车到达时间的乘客)、Backend server(后台服务器);
  • 方法思路:
    通过手机麦克风及加速度计的特征变化值去判断Sharing user是否在公交车上;若是,则开始收集Sharing user手机当前蜂窝信号范围内最强的三个信号塔ID去组成公交路线信号序列,通过与数据库中储存的公交线路信号序列做对比从而可判断出Sharing user目前所在的公交路线,接着Backend sever会根据历史数据以及最新的公共汽车路线状态估算其到达公共汽车站的时间发送给Querying user。系统框架如下图所示:
    在这里插入图片描述

论文背景

  • 已有公交公司系统提供信息更新不实时
    乘客不知道下一趟公交车的到达时间有可能会出现等待时间过长的情况,乘客体验感差;
  • 公交车安装定位、通信设备费用较大
    公交车除了要安装定位设备外还需要安装网络通信设备的支持,提供运输服务的网络基础设施也会提高了部署成本,这些最终将转化为乘客支出的增加。
  • 利用乘客手机的GPS功能去定位能耗很大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值