HEVC之信息论基础

信息论基础

每获得一部分信息就消除一部分不确定性,从这个意义上来说,信息是对不确定性的消除。概率论中概率就可以描述随机事件的不确定性,因此,信息一定是一个概率的函数。

信息的定义

香农给出的信息的定义:事物运动状态或存在方式不确定性的描述。

使用概率来度量不确定性的大小,则不确定性大小 f ( p ( x ) ) f(p(x)) f(p(x)) p ( x ) p(x) p(x) 表示事件发生的概率)应该满足以下 3 个条件:

  1. f ( 1 ) = 0 f(1) = 0 f(1)=0。必然事件的不确定性为 0。
  2. f ( p ( x ) ) f(p(x)) f(p(x)) 是单调递减函数。概率越大,不确定性越小。
  3. 独立可加性。 f ( p ( x ) p ( y ) ) = f ( p ( x ) ) + f ( p ( y ) ) f(p(x)p(y)) = f(p(x)) + f(p(y)) f(p(x)p(y))=f(p(x))+f(p(y))

概率的倒数取对数即可满足以上条件,这就是香农的自信息量的定义:

I ( x i ) = l o g 1 p ( x i ) I(x_i) = log{\frac{1}{p(x_i)}} I(xi)=logp(xi)1

p ( x i ) {p(x_i)} p(xi) 表示信源选择符号 x i x_i xi 作为发送消息的概率。以 2 为底时,单位为 bit。以 e e e 为底时,单位为 nat。以 10 为底时,单位为 Hart

那么针对一个系统而言,取各随机事件自信息的统计平均来代表其总体信息量。离散随机变量 X X X 的信息熵 H ( X ) H(X) H(X) 定义为:
H ( X ) = − ∑ x ∈ X p ( x ) log ⁡ p ( x ) H(X) = -\sum_{x \in X}{p(x) \log p(x)} H(X)=xXp(x)logp(x)
将其推广到多个随机变量,则一对离散随机变量 ( X , Y ) (X,Y) (X,Y) 的联合熵定义为:
H ( X , Y ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) log ⁡ p ( x , y ) H(X,Y) = - \sum_{x \in X}\sum_{y \in Y}{p(x,y)\log{p(x,y)}} H(X,Y)=xXyYp(x,y)logp(x,y)
并且 H ( X , Y ) ≤ H ( X ) + H ( Y ) H(X,Y) \le H(X) + H(Y) H(X,Y)H(X)+H(Y),当 X X X Y Y Y 独立时等号成立。当 X X X Y Y Y 相关时,观察 X X X 就可以消除 Y Y Y 的一部分不确定性。

离散随机变量 X X X Y Y Y互信息 I ( X ; Y ) I(X;Y) I(X;Y) 定义为:
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) I(X;Y) = H(X) - H(X|Y) I(X;Y)=H(X)H(XY)
可以理解为:已知 Y Y Y,对于 X X X 的不确定性减少程度。也可以扩展成:
I ( X ; Y ) = H ( X ) + H ( Y ) − H ( X , Y ) = ∑ x ∈ X ∑ y ∈ Y p ( x , y ) log ⁡ p ( x , y ) p ( x ) p ( y ) I(X;Y) = H(X) + H(Y) - H(X,Y) \\ = \sum_{x \in X}\sum_{y \in Y}{p(x,y)\log{\frac{p(x,y)}{p(x)p(y)}}} I(X;Y)=H(X)+H(Y)H(X,Y)=xXyYp(x,y)logp(x)p(y)p(x,y)
X X X Y Y Y 独立时, I ( X ; Y ) = 0 I(X;Y) = 0 I(X;Y)=0;当 X X X Y Y Y 一一映射时, I ( X ; Y ) = H ( X ) = H ( Y ) I(X;Y) = H(X) = H(Y) I(X;Y)=H(X)=H(Y)

互信息的基本性质:

  1. 对称性: I ( X ; Y ) = I ( Y ; X ) I(X;Y) = I(Y;X) I(X;Y)=I(Y;X)
  2. 非负性: I ( X ; Y ) ≥ 0 I(X;Y) \ge 0 I(X;Y)0
  3. 极值性: I ( X ; Y ) ≤ m i n ( H ( X ) , H ( Y ) ) I(X;Y) \le min(H(X),H(Y)) I(X;Y)min(H(X),H(Y))
  4. 可加性: I ( X 1 , X 2 ⋯ X n ; Y ) = ∑ i = 1 n I ( I i ; Y ) I(X_1,X_2 \cdots X_n;Y) = \sum_{i=1}^{n}I(I_i;Y) I(X1,X2Xn;Y)=i=1nI(Ii;Y)

率失真理论的基本概念

失真函数在输入输出联合空间中取统计平均:
D = ∑ x i , x ^ j p ( x i ) q ( x ^ j ∣ x i ) d ( x i , x ^ j ) D = \sum_{x_i,\hat{x}_j}p(x_i)q(\hat{x}_j|x_i)d(x_i,\hat{x}_j) D=xi,x^jp(xi)q(x^jxi)d(xi,x^j)
表示给定信源分布和转移概率分布时,信道传输失真总体的平均度量。

针对信源 X X X 和失真度量 d ( x , x ^ ) d(x,\hat{x}) d(x,x^),信息的率失真函数 R ( D ) R(D) R(D) 定义为:
R ( D ) = m i n ∑ x , x ^ p ( x ) q ( x ^ ∣ x ) d ( x , x ^ ) ≤ D I ( X ; X ^ ) R(D) = \mathop{min}\limits_{\sum_{x,\hat{x}} p(x) q(\hat{x}|x) d(x,\hat{x}) \le D}I(X;\hat{X}) R(D)=x,x^p(x)q(x^x)d(x,x^)DminI(X;X^)
在失真 D D D 的限制下,最小化输入输出的互信息。

高斯信源的率失真函数

在均方失真度量下,高斯信源的率失真函数是:
R ( D ) = { 1 2 log ⁡ σ 2 D , 0 ≤ D ≤ σ 2 0 ,              D > σ 2 R(D)=\left\{ \begin{aligned} \frac{1}{2} \log{\frac{\sigma^2}{D}} , 0 \le D \le \sigma^2\\ 0 ,\ \ \ \ \ \ \ \ \ \ \ \ D > \sigma^2 \end{aligned} \right. R(D)=21logDσ2,0Dσ20,            D>σ2

以下是证明过程:
假设一个随机变量 X X X 服从高斯分布,则其概率密度函数为:

f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp({-\frac{(x-\mu)^2}{2\sigma^2}}) f(x)=2π σ1exp(2σ2(xμ)2)

对于一个连续的随机变量,其微分熵为:

h ( X ) = − ∫ − ∞ + ∞ p ( x ) log ⁡ p ( x ) d x h(X) = -\int_{-\infty}^{+\infin} p(x)\log{p(x)} dx h(X)=+p(x)logp(x)dx

则: X X X 的微分熵为:

h ( X ) = − ∫ − ∞ + ∞ p ( x ) log ⁡ 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) d x = − ∫ − ∞ + ∞ p ( x ) log ⁡ 1 2 π σ d x − ∫ − ∞ + ∞ p ( x ) log ⁡ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) d x = − ∫ − ∞ + ∞ p ( x ) log ⁡ 1 2 π σ d x + log ⁡ e ∫ − ∞ + ∞ p ( x ) ( x − μ ) 2 2 σ 2 d x = − log ⁡ 1 2 π σ 2 π σ ∫ − ∞ + ∞ 2 σ exp ⁡ ( − ( ( x − μ ) 2 σ ) 2 ) d ( x − μ 2 σ ) + log ⁡ e 2 π σ ∫ − ∞ + ∞ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) ( x − μ ) 2 2 σ 2 d x = log ⁡ ( 2 π σ ) + log ⁡ e 2 π σ ∫ − ∞ + ∞ − ( x − μ ) 2 d ( exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) ) = log ⁡ ( 2 π σ ) − 1 2 log ⁡ e π ∫ − ∞ + ∞ ( x − μ ) 2 σ d ( exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) ) = log ⁡ ( 2 π σ ) − log ⁡ e 2 π ( 0 − ∫ − ∞ + ∞ exp ⁡ ( − ( x − μ ) 2 σ ) d ( x − μ 2 σ ) ) = log ⁡ ( 2 π σ ) + log ⁡ e 2 = 1 2 log ⁡ ( 2 π e σ 2 ) h(X) = -\int_{-\infty}^{+\infin} p(x)\log{\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2})} dx \\ = -\int_{-\infty}^{+\infin} p(x)\log{\frac{1}{\sqrt{2\pi}\sigma}} dx - \int_{-\infty}^{+\infin} p(x)\log{\exp(-\frac{(x-\mu)^2}{2\sigma^2})} dx \\ = -\int_{-\infty}^{+\infin} p(x)\log{\frac{1}{\sqrt{2\pi}\sigma}} dx + \log{e}\int_{-\infty}^{+\infin} p(x)\frac{(x-\mu)^2}{2\sigma^2} dx \\ = -\frac{\log{\frac{1}{\sqrt{2\pi}\sigma}}}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infin}{\sqrt{2}\sigma\exp(-(\frac{(x-\mu)}{\sqrt{2}\sigma})^2)} d(\frac{x-\mu}{\sqrt{2}\sigma}) + \frac{\log e}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infin} \exp(-\frac{(x-\mu)^2}{2\sigma^2})\frac{(x-\mu)^2}{2\sigma^2} dx\\ = \log(\sqrt{2\pi}\sigma) + \frac{\log e}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infin} - \frac{(x-\mu)}{2} d(\exp(-\frac{(x-\mu)^2}{2\sigma^2})) \\ = \log(\sqrt{2\pi}\sigma) - \frac{1}{2} \frac{\log e}{\sqrt{\pi}} \int_{-\infty}^{+\infin} \frac{(x-\mu)}{\sqrt{2}\sigma} d(\exp(-\frac{(x-\mu)^2}{2\sigma^2})) \\ = \log(\sqrt{2\pi}\sigma) - \frac{\log e}{2\sqrt{\pi}} (0 - \int_{-\infty}^{+\infin} \exp(-\frac{(x-\mu)^2}{\sigma}) d(\frac{x-\mu}{\sqrt{2}\sigma})) \\ = \log(\sqrt{2\pi}\sigma) + \frac{\log e}{2} \\ = \frac{1}{2}\log(2\pi e\sigma^2) h(X)=+p(x)log2π σ1exp(2σ2(xμ)2)dx=+p(x)log2π σ1dx+p(x)logexp(2σ2(xμ)2)dx=+p(x)log2π σ1dx+loge+p(x)2σ2(xμ)2dx=2π σlog2π σ1+2 σexp((2 σ(xμ))2)d(2 σxμ)+2π σloge+exp(2σ2(xμ)2)2σ2(xμ)2dx=log(2π σ)+2π σloge+2(xμ)d(exp(2σ2(xμ)2))=log(2π σ)21π loge+2 σ(xμ)d(exp(2σ2(xμ)2))=log(2π σ)2π loge(0+exp(σ(xμ)2)d(2 σxμ))=log(2π σ)+2loge=21log(2πeσ2)

注: ∫ − ∞ + ∞ exp ⁡ ( − x 2 ) d x = π \int_{-\infty}^{+\infin} \exp(-x^2) dx = \sqrt{\pi} +exp(x2)dx=π

因此,互信息 I ( X ; X ^ ) I(X;\hat{X}) I(X;X^)
I ( X ; X ^ ) = h ( X ) − h ( X ∣ X ^ ) = 1 2 log ⁡ ( 2 π e σ 2 ) − h ( X − X ^ ∣ X ^ ) ( X ^ 已 知 , 所 以 减 去 X ^ 不 影 响 h ( X ∣ X ^ ) 的 值 ) ≥ 1 2 log ⁡ ( 2 π e σ 2 ) − h ( X − X ^ ) ≥ 1 2 log ⁡ ( 2 π e σ 2 ) − h ( N ( 0 , E ( X − X ^ ) 2 ) ) ( h ( X − X ^ ) 与 h ( N ( 0 , E ( X − X ^ ) 2 ) ) 具 有 相 同 方 差 ) ≥ 1 2 log ⁡ ( 2 π e σ 2 ) − 1 2 log ⁡ ( 2 π e D ) ( ( X − X ^ ) 2 表 示 平 方 意 义 下 的 失 真 , 必 须 小 于 D ) = 1 2 log ⁡ σ 2 D I(X;\hat{X}) = h(X) - h(X|\hat{X}) \\ = \frac{1}{2} \log(2\pi e\sigma^2) - h(X-\hat{X}|\hat{X})(\hat{X}已知,所以减去\hat{X}不影响h(X|\hat{X})的值) \\ \ge \frac{1}{2} \log(2\pi e\sigma^2) - h(X-\hat{X}) \\ \ge \frac{1}{2} \log(2\pi e\sigma^2) - h(N(0,E(X-\hat{X})^2)) (h(X-\hat{X})与h(N(0,E(X-\hat{X})^2))具有相同方差)\\ \ge \frac{1}{2} \log(2\pi e\sigma^2) - \frac{1}{2} \log(2\pi eD) ((X-\hat{X})^2表示平方意义下的失真,必须小于D)\\ =\frac{1}{2}\log{\frac{\sigma^2}{D}} I(X;X^)=h(X)h(XX^)=21log(2πeσ2)h(XX^X^)X^X^h(XX^)21log(2πeσ2)h(XX^)21log(2πeσ2)h(N(0,E(XX^)2))h(XX^)h(N(0,E(XX^)2))21log(2πeσ2)21log(2πeD)(XX^)2D=21logDσ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值