傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换

三角函数的正交性

三角函数系定义: { 0 , 1 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , . . . , sin ⁡ n x , cos ⁡ n x , . . . } \{0,1,\sin{x},\cos{x},\sin{2x},\cos{2x},...,\sin{nx},\cos{nx},...\} {0,1,sinx,cosx,sin2x,cos2x,...,sinnx,cosnx,...}

频率不同的三角函数相乘在一个周期内( − π -\pi π π \pi π)的积分必定为 0:
∫ − π π sin ⁡ ( m x ) sin ⁡ ( n x ) d x = 1 2 ∫ − π π cos ⁡ [ ( m − n ) x ] − cos ⁡ [ ( m + n ) x ] d x = 0 , w h e r e   n ≠ m \int_{-\pi}^{\pi} \sin(mx) \sin(nx)dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos[(m-n)x] - \cos[(m+n)x]dx = 0, where\ n \ne m ππsin(mx)sin(nx)dx=21ππcos[(mn)x]cos[(m+n)x]dx=0,where n=m

∫ − π π cos ⁡ ( m x ) cos ⁡ ( n x ) d x = 1 2 ∫ − π π cos ⁡ [ ( m − n ) x ] + cos ⁡ [ ( m + n ) x ] d x = 0 , w h e r e   n ≠ m \int_{-\pi}^{\pi} \cos(mx) \cos(nx)dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos[(m-n)x] + \cos[(m+n)x]dx = 0, where\ n \ne m ππcos(mx)cos(nx)dx=21ππcos[(mn)x]+cos[(m+n)x]dx=0,where n=m

∫ − π π sin ⁡ ( m x ) cos ⁡ ( n x ) d x = 1 2 ∫ − π π sin ⁡ [ ( m − n ) x ] + sin ⁡ [ ( m + n ) x ] d x = 0 \int_{-\pi}^{\pi} \sin(mx) \cos(nx)dx = \frac{1}{2} \int_{-\pi}^{\pi} \sin[(m-n)x] + \sin[(m+n)x]dx = 0 ππsin(mx)cos(nx)dx=21ππsin[(mn)x]+sin[(m+n)x]dx=0

因此,在三角函数系中,取 2 个不同的函数,其乘积在 [ − π , π ] [-\pi,\pi] [π,π] 之间的定积分为 0。

傅里叶级数

周期为 2 π \pi π 的函数展开为傅里叶级数

将一个函数展开成傅里叶级数:
f ( x ) = ∑ n = 0 ∞ a n cos ⁡ ( n x ) + ∑ n = 0 ∞ b n sin ⁡ ( n x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ ( n x ) + ∑ n = 1 ∞ b n sin ⁡ ( n x ) f(x) = \sum_{n=0}^{\infty} a_n \cos(nx) + \sum_{n=0}^{\infty} b_n \sin(nx) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx) f(x)=n=0ancos(nx)+n=0bnsin(nx)=2a0+n=1ancos(nx)+n=1bnsin(nx)
a 0 a_0 a0

等式左右两边分别对 − π -\pi π π \pi π 求积分:
∫ − π π f ( x ) d x = 2 π a 0 + ∫ − π π ∑ n = 1 ∞ a n cos ⁡ ( n x ) d x + ∫ − π π ∑ n = 1 ∞ b n sin ⁡ ( n x ) d x \int_{-\pi}^{\pi} f(x)dx = 2\pi a_0 + \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} a_n \cos(nx) dx + \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} b_n \sin(nx)dx ππf(x)dx=2πa0+ππn=1ancos(nx)dx+ππn=1bnsin(nx)dx
根据三角函数的正交性:
∫ − π π f ( x ) d x = 2 π a 0 → a 0 2 = 1 π ∫ − π π f ( x ) d x \int_{-\pi}^{\pi} f(x)dx = 2\pi a_0 \rightarrow \frac{a_0}{2} = \frac{1}{\pi}\int_{-\pi}^{\pi} f(x)dx ππf(x)dx=2πa02a0=π1ππf(x)dx
a n a_n an:等式左右两边同时乘以 cos ⁡ ( m x ) \cos(mx) cos(mx) 再对 − π -\pi π π \pi π 求积分:
∫ − π π f ( x ) cos ⁡ ( m x ) d x = ∫ − π π a 0 2 cos ⁡ ( m x ) d x + ∫ − π π ∑ n = 1 ∞ a n cos ⁡ ( n x ) cos ⁡ ( m x ) d x + ∫ − π π ∑ n = 1 ∞ b n sin ⁡ ( n x ) cos ⁡ ( m x ) d x \int_{-\pi}^{\pi} f(x) \cos(mx)dx = \int_{-\pi}^{\pi} \frac{a_0}{2}\cos(mx)dx + \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} a_n \cos(nx) \cos(mx) dx + \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} b_n \sin(nx) \cos(mx) dx ππf(x)cos(mx)dx=ππ2a0cos(mx)dx+ππn=1ancos(nx)cos(mx)dx+ππn=1bnsin(nx)cos(mx)dx
根据三角函数的正交性: ∫ − π π f ( x ) cos ⁡ ( m x ) d x = ∫ − π π ∑ n = 1 ∞ a n cos ⁡ ( n x ) cos ⁡ ( m x ) d x \int_{-\pi}^{\pi} f(x) \cos(mx)dx = \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} a_n \cos(nx) \cos(mx) dx ππf(x)cos(mx)dx=ππn=1ancos(nx)cos(mx)dx

仅当 n = m n=m n=m 时:
∫ − π π f ( x ) cos ⁡ ( m x ) d x = ∫ − π π a n cos ⁡ ( n x ) cos ⁡ ( n x ) d x = a n ∫ − π π cos ⁡ 2 ( n x ) d x = a n π \int_{-\pi}^{\pi} f(x) \cos(mx)dx = \int_{-\pi}^{\pi} a_n \cos(nx) \cos(nx) dx = a_n \int_{-\pi}^{\pi}\cos^2(nx)dx = a_n \pi ππf(x)cos(mx)dx=ππancos(nx)cos(nx)dx=anππcos2(nx)dx=anπ
因此:
a n = 1 π ∫ − π π f ( x ) cos ⁡ ( n x ) d x a_n = \frac{1}{\pi}\int_{-\pi}^{\pi} f(x) \cos(nx)dx an=π1ππf(x)cos(nx)dx
b n b_n bn:等式左右两边同时乘以 sin ⁡ ( m x ) \sin(mx) sin(mx) 再对 − π -\pi π π \pi π 求积分:
b n = 1 π ∫ − π π f ( x ) sin ⁡ ( n x ) d x b_n = \frac{1}{\pi}\int_{-\pi}^{\pi} f(x) \sin(nx)dx bn=π1ππf(x)sin(nx)dx

周期为 2 L L L 的函数展开为傅里叶级数

函数 f ( t ) f(t) f(t) 的周期为 2 L L L,利用换元的方法:
x = π L t t = L π f ( t ) = f ( L π x ) ≜ g ( x ) x = \frac{\pi}{L}t \\ t = \frac{L}{\pi} \\ f(t) = f(\frac{L}{\pi}x) \triangleq g(x) x=Lπtt=πLf(t)=f(πLx)g(x)
函数 g ( x ) g(x) g(x) 即为周期 2 π \pi π 的函数。因此:
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n cos ⁡ ( n π L t ) + b n sin ⁡ ( n π L t ) ] a 0 = 1 L ∫ − L L f ( t ) d t a n = 1 L ∫ − L L f ( t ) cos ⁡ ( n π L t ) d t b n = 1 L ∫ − L L f ( t ) sin ⁡ ( n π L t ) d t f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{n\pi}{L}t) + b_n \sin(\frac{n\pi}{L}t)] \\ a_0 = \frac{1}{L}\int_{-L}^{L} f(t)dt \\ a_n = \frac{1}{L}\int_{-L}^{L} f(t) \cos(\frac{n\pi}{L}t)dt \\ b_n = \frac{1}{L}\int_{-L}^{L} f(t) \sin(\frac{n\pi}{L}t)dt f(t)=2a0+n=1[ancos(Lnπt)+bnsin(Lnπt)]a0=L1LLf(t)dtan=L1LLf(t)cos(Lnπt)dtbn=L1LLf(t)sin(Lnπt)dt
通常来说, t t t 从 0 开始,周期为 T = 2 L T=2L T=2L ω = π L = 2 π T \omega = \frac{\pi}{L} = \frac{2\pi}{T} ω=Lπ=T2π
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) ] a 0 = 2 T ∫ 0 T f ( t ) d t a n = 2 T ∫ 0 T f ( t ) cos ⁡ ( n ω t ) d t b n = 2 T ∫ 0 T f ( t ) sin ⁡ ( n ω t ) d t (1) f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n \omega t) + b_n \sin(n \omega t)] \\ a_0 = \frac{2}{T}\int_{0}^{T} f(t)dt \\ a_n = \frac{2}{T}\int_{0}^{T} f(t) \cos(n \omega t)dt \\ b_n = \frac{2}{T}\int_{0}^{T} f(t) \sin(n \omega t)dt \\ \tag{1} f(t)=2a0+n=1[ancos(nωt)+bnsin(nωt)]a0=T20Tf(t)dtan=T20Tf(t)cos(nωt)dtbn=T20Tf(t)sin(nωt)dt(1)

傅里叶级数的复数形式

欧拉公式: e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta} = \cos{\theta} + i \sin{\theta} eiθ=cosθ+isinθ

由此引申 2 个推导:
cos ⁡ θ = 1 2 ( e i θ + e − i θ ) sin ⁡ θ = − 1 2 i ( e i θ − e − i θ ) \cos{\theta} = \frac{1}{2} (e^{i\theta} + e^{-i\theta}) \\ \sin{\theta} = -\frac{1}{2}i (e^{i\theta} - e^{-i\theta}) cosθ=21(eiθ+eiθ)sinθ=21i(eiθeiθ)
将其带入公式 ( 1 ) (1) (1)
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n e i n ω t + e − i n ω t 2 + b n − i ( e i n ω t + e − i n ω t ) 2 ] = a 0 2 + ∑ n = 1 ∞ e i n ω t a n − i b n 2 + ∑ n = 1 ∞ e − i n ω t a n + i b n 2 = a 0 2 + ∑ n = 1 ∞ e i n ω t a n − i b n 2 + ∑ n = − ∞ − 1 e i n ω t a − n + i b − n 2 = ∑ n = − ∞ ∞ c n e i n ω t f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \frac{e^{in\omega t} + e^{-in\omega t}}{2} + b_n \frac{-i(e^{in\omega t} + e^{-in\omega t})}{2}] \\ = \frac{a_0}{2} + \sum_{n=1}^{\infty} e^{in\omega t} \frac{a_n - ib_n}{2} + \sum_{n=1}^{\infty} e^{-in\omega t} \frac{a_n + ib_n}{2} \\ = \frac{a_0}{2} + \sum_{n=1}^{\infty} e^{in\omega t} \frac{a_n - ib_n}{2} + \sum_{n=-\infty}^{-1} e^{in\omega t} \frac{a_{-n} + ib_{-n}}{2} \\ = \sum_{n=-\infty}^{\infty}c_n e^{in\omega t} f(t)=2a0+n=1[an2einωt+einωt+bn2i(einωt+einωt)]=2a0+n=1einωt2anibn+n=1einωt2an+ibn=2a0+n=1einωt2anibn+n=1einωt2an+ibn=n=cneinωt
其中,
c n = a 0 2 , w h e r e   n = 0 c n = a n − i b n 2 , w h e r e   n > 0 c n = a − n + i b − n 2 , w h e r e   n < 0 c_n = \frac{a_0}{2}, where \ n = 0 \\ c_n = \frac{a_n - ib_n}{2}, where \ n > 0 \\ c_n = \frac{a_{-n} + ib_{-n}}{2}, where \ n < 0 cn=2a0,where n=0cn=2anibn,where n>0cn=2an+ibn,where n<0
即:
c n = a 0 2 = 1 T ∫ 0 T f ( t ) d t , w h e r e   n = 0 c n = a n − i b n 2 = 1 T ∫ 0 T f ( t ) e − i n ω t d t , w h e r e   n > 0 c n = a − n + i b − n 2 = 1 T ∫ 0 T f ( t ) e − i n ω t d t , w h e r e   n < 0 c_n = \frac{a_0}{2} = \frac{1}{T}\int_{0}^{T} f(t)dt, where \ n = 0 \\ c_n = \frac{a_n - ib_n}{2} = \frac{1}{T}\int_{0}^{T} f(t)e^{-in\omega t}dt, where \ n > 0 \\ c_n = \frac{a_{-n} + ib_{-n}}{2} = \frac{1}{T}\int_{0}^{T} f(t)e^{-in\omega t}dt, where \ n < 0 cn=2a0=T10Tf(t)dt,where n=0cn=2anibn=T10Tf(t)einωtdt,where n>0cn=2an+ibn=T10Tf(t)einωtdt,where n<0
因此:
f ( t ) = ∑ n = − ∞ ∞ c n e i n ω t   w h e r e   c n = 1 T ∫ 0 T f ( t ) e − i n ω t d t (2) \textcolor{red}{ f(t) = \sum_{n=-\infty}^{\infty}c_n e^{in\omega t}\\\ where\ c_n =\frac{1}{T}\int_{0}^{T} f(t)e^{-in\omega t}dt } \tag{2} f(t)=n=cneinωt where cn=T10Tf(t)einωtdt(2)

傅里叶变换

为了表示的方便,在这里,定义 ω 0 = 2 π T \omega _0 = \frac{2\pi}{T} ω0=T2π,而 ω \omega ω 表示连续的角频率

上面的公式 ( 2 ) (2) (2) 可以写成:
f ( t ) = ∑ n = − ∞ ∞ ω 0 2 π ∫ − T 2 T 2 f ( t ) e − i n ω 0 t d t e i n ω 0 t (3) f(t) = \sum_{n=-\infty}^{\infty}\frac{\omega _0}{2\pi}\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-in\omega _0t}dt e^{in\omega _0t} \tag{3} f(t)=n=2πω02T2Tf(t)einω0tdteinω0t(3)

当一个函数为非周期函数时: T → ∞ T \rightarrow \infty T,则:
∫ − T 2 T 2 d t → ∫ − ∞ ∞ d t n ω 0 → ω ∑ n = − ∞ ∞ ω 0 → ∫ − ∞ ∞ d ω \int_{-\frac{T}{2}}^{\frac{T}{2}}dt \rightarrow \int_{-\infty}^{\infty}dt \\ n\omega _0 \rightarrow \omega \\ \sum_{n=-\infty}^{\infty} \omega _0 \rightarrow \int_{-\infty}^{\infty}d\omega 2T2Tdtdtnω0ωn=ω0dω
因此,非周期函数的傅里叶级数可以写成:
f ( t ) = 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t ) e − i ω t d t e i ω t d ω f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty}\textcolor{red}{\int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt} e^{i\omega t}d\omega f(t)=2π1f(t)eiωtdteiωtdω
其中,红色部分就称为傅里叶变换
F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t (4) F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt \tag{4} F(ω)=f(t)eiωtdt(4)
剩下的就是傅里叶逆变换
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega) e^{i\omega t}d\omega f(t)=2π1F(ω)eiωtdω

离散傅里叶变换 (DFT)

对于一个长度为 N 的序列 x [ n ] x[n] x[n],其可以理解成周期为 N,公式 ( 3 ) (3) (3) 可以表示成:
X [ k ] = ∑ n = 0 N − 1 x [ n ] e − i n 2 π N k X[k] =\sum_{n=0}^{N-1} x[n] e^{-in\frac{2\pi}{N}k} X[k]=n=0N1x[n]einN2πk
其中, k = 0 , 1 , 2 , . . . , N − 1 k = 0,1,2,...,N-1 k=0,1,2,...,N1

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值