群同态(group homomorphism)
群同态是群论中两个群之间保持群乘法结构的一种映射。
定义:设群(G,∗)和群(G′,⊗),如果函数 f : G→G′ 对于∀a,b∈G,都有:f(a∗b)=f(a)⊗f(b)那么f就是(G,∗)到(G′,⊗)的群同态
例如:群和群是同态的。
同态并没有要求f是一个双射,是一个单射或者满射,单射时称为单同态,满射时称为满同态。利用群同态这种映射,我们可以用一个群来分析另一个群。
同构
群同态(group homomorphism)
群同态是群论中两个群之间保持群乘法结构的一种映射。
定义:设群(G,∗)和群(G′,⊗),如果函数 f : G→G′ 对于∀a,b∈G,都有:f(a∗b)=f(a)⊗f(b)那么f就是(G,∗)到(G′,⊗)的群同态
例如:群和群是同态的。
同态并没有要求f是一个双射,是一个单射或者满射,单射时称为单同态,满射时称为满同态。利用群同态这种映射,我们可以用一个群来分析另一个群。
同构