群同态与群同构-抽象代数【密码学数学基础】

群同态是保持群乘法结构的映射,允许我们分析不同群的性质。群同构是通过双射映射使两个群的运算规则相同的理论,常用于简化复杂问题。在密码学中,这些概念可能用于构造安全的算法。自同构是群到自身的同构,其所有元素构成的集合形成自同构群。单射、满射和双射是映射的特殊类型,双射确保了一一对应的关系。
摘要由CSDN通过智能技术生成

群同态(group homomorphism)

        群同态是群论中两个群之间保持群乘法结构的一种映射。

定义:设群(G,∗)和群(G′,⊗),如果函数 f : G→G′ 对于∀a,b∈G,都有:f(a∗b)=f(a)⊗f(b)那么f就是(G,∗)到(G′,⊗)的群同态

例如:G=(\mathbb{R},+)和群G(\mathbb{R}^+,\times)是同态的。

        同态并没有要求f是一个双射,是一个单射或者满射,单射时称为单同态,满射时称为满同态。利用群同态这种映射,我们可以用一个群来分析另一个群。


        同构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值