欧几里得(Euclid)算法-公钥密码数学基础

欧几里得算法是计算两个正整数最大公约数的算法,由古希腊数学家欧几里得提出。通过不断用较大数除以较小数并取余,直到余数为0,最后的除数即为最大公约数。本文介绍了算法的流程、数学证明和代码实现。
摘要由CSDN通过智能技术生成

        欧几里得算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里得算法。

        欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。

公式表示:

gcd(a,b) = gcd(b,a mod b),要求a >= b

gcd 为 Greatest Common Divisor最大公约数的缩写;

算法框图:

该算法不断地将b,a mod b作为新的a,b进行迭代计算,直到当b为0时a就是最大公约数。


示例

求(35,10)以及(13,7)的最大公约数

步骤:

1.35 / 10 = 2 ... 5

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值