Description
给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<=len)。
Input
输入文件共2行。
第一行包括一个整数n。
第二行包括n个整数,第i个整数表示ai。
Output
输出文件共一行。
包括一个整数,表示子序列bi的最长长度。
Sample Input
3
1 2 3
Sample Output
2
HINT
n<=100000,ai<=2*10^9
真的是一道”绝世好题“;
看了题目我们可以很轻松打出一个二维DP;但显然过不了(废话),
正解: f[i]表示处理到当前数,第i位不为0的最优长度
具体实现看代码
:
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
inline int read(){
int f=1,x=0;
char c=getchar();
while (c<'0'||c>'9'){if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return f*x;
}
int n,ans,g,h,o,p;
int f[32];
int main(){
int i,j,k;
n=read();
for (int i=1;i<=n;i++){
g=read();
int p=0;
for (int j=0;j<=30;j++)
if (g&(1<<j))
p=max(p,f[j]+1);
for (int j=0;j<=30;j++)
if (g&(1<<j))
f[j]=p;
ans=max(ans,p);
}
printf("%d\n",ans);
return 0;
}