斐波那契数列定理们

斐波那契数列定理1

gcd(f[i],f[i+1])=1
利用辗转相减法
证明:
gcd(f[i],f[i+1])
=gcd(f[i+1]−f[i],f[i])
=gcd(f[i−1],f[i])
=….
=gcd(f[1],f[2])=1

斐波那契数列定理2

f[m+n]=f[m−1]f[n]+f[m]f[n+1]
证明:
f[m+n]=f[n+m−1]+f[n+m−2]
=2∗f[n+m−1]+f[n+m−3]
=….
设f[n+m]=a[x]f[n+m−x]+b[x]f[n+m−x−1]
=ax+b[x]f[n+m−x−1]
=(a[x]+b[x])f[n+m−x−1]+a[x]f[n+m−x−2]
所以
x=1时,a[1]=f[2]=1,b[1]=f[1]=1
x=2时,a[2]=f[1]+f[2]=f[3]=2,b[2]=a[1]=1
x=k+1时,a[k+1]=a[k]+b[k]=f[k+1]+f[k]=f[k+2],b[k+1]=a[k]=f[k+1]
所以,当x=n时
f[n+m]=a[n]f[m]+b[n]f[m+1]
=f[n+1]f[m]+f[n]f[m−1]

斐波那契数列定理3

gcd(f[n+m],f[n])=gcd(f[n],f[m])
由上面式子得到
gcd(f[n+m]=f[m−1]f[n]+f[m]f[n+1],f[n])
=gcd(f[n+1]f[m],f[n])
=gcd(f[n+1],f[n])∗gcd(f[m],f[n])
=1∗gcd(f[m],f[n])
=gcd(f[m],f[n])

斐波那契数列定理4

gcd(f[n],f[n+m])=f[gcd(n,n+m)]
证明
gcd(f[n],f[n+m])
=gcd(f[n],f[n+m]%f[m])
=gcd(f[n],f[m])
=gcd(f[n],f[(n+m)%n])
这是辗转相除的形式
所以,最后有
gcd(f[n],f[n+m])
=gcd(f[0],f[gcd(n,n+m)])
=f[gcd(n,n+m)]
、转自yyb’s blog

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值