arc074f

题目大意

给你一个n*m网格图,有起点荷叶和终点荷叶,有中转荷叶,其他的格子没东西,一个荷叶可以跳到同一行或者列的另一个荷叶。问最多删掉几个中转荷叶能让起点终点不连通。如果不行输出-1.
n,m<=100

题解

中出了一个叛徒题目???
裸的最小割???
考虑到是删点我们直接把一个点拆成两个点,中间连一条流量为1的单向边就好了

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define min(x,y) ((x)<(y)?(x):(y))
using namespace std;

const int maxn=3e6+5;

int fi[maxn],ne[maxn*2],dui[maxn*2],dui1[maxn*2],qc[maxn];
int a[105][105],de[20005],h[maxn];
char s[105];
int i,j,k,l,m,n,x,y,now,p,be,ed,ans;
bool bq;

void add(int x,int y,int z){
    if (fi[x]==0) fi[x]=++now; else ne[qc[x]]=++now;
    dui[now]=y; dui1[now]=z; qc[x]=now;
}
bool bfs(){
    memset(de,255,sizeof(de));
    de[be]=0;
    h[1]=be; i=1; j=0;
    while (i>j){
        x=h[++j];
        for(int k=fi[x];k;k=ne[k]){
            if (de[dui[k]]!=-1 || dui1[k]==0) continue;
            de[dui[k]]=de[x]+1;
            h[++i]=dui[k];
        }
    }
    if (de[ed]==-1) return false; else return true;
}
int dinic(int x,int w){
    int i=fi[x],now=0,p;
    if (x==ed) return w;
    for(;i;i=ne[i]){
        if (dui1[i]==0 || de[dui[i]]!=de[x]+1) continue;
        p=dinic(dui[i],min(w-now,dui1[i]));
        if (p){
            dui1[i]-=p; dui1[i xor 1]+=p; now+=p;
        }
    }
    return now;
}
int main(){
//  freopen("074f.in","r",stdin);
    scanf("%d%d",&n,&m);
    fo(i,1,n){
        scanf("%s",&s);
        fo(j,0,m-1){
            if (s[j]=='.') continue;
            a[i][j+1]=++p;
            if (s[j]=='S') be=p;
            if (s[j]=='T') ed=p;
        }
    }
    now=1;
    fo(i,1,n)
        fo(j,1,m) if (a[i][j]>0 && a[i][j]!=ed){
            fo(k,1,m) if (a[i][k]>0 && a[i][k]!=a[i][j] && a[i][k]!=be){
                add(a[i][j]+p,a[i][k],1234567);
                if (a[i][j]==be && a[i][k]==ed){
                    printf("-1\n"); return 0;
                }
            }
            fo(k,1,n) if (a[k][j]>0 && a[k][j]!=a[i][j] && a[k][j]!=be){
                add(a[i][j]+p,a[k][j],1234567);
                if (a[i][j]==be && a[k][j]==ed){
                    printf("-1\n"); return 0;
                }
            }
        }
    fo(i,1,p){
        if (i==be || i==ed) add(i,i+p,1234567); else add(i,i+p,1);
        add(i+p,i,0);
    }
    ed=ed+p;
    while (bfs()) 
        ans=ans+dinic(be,1234567);
    printf("%d\n",ans);
    return 0;
}
ARC069 F 题目传送门:https://atcoder.jp/contests/arc069/tasks/arc069_d 题目描述: 给定两个长度为 $n$ 的字符串 $s$ 和 $t$,每个字符都是小写字母。你需要找到一个长度为 $n$ 的字符串 $u$,满足: - 对于所有 $i \in [1,n]$,都有 $u_i \in \{s_i,t_i\}$。 - 对于所有 $i \in [1,n-1]$,都有 $u_i \neq u_{i+1}$。 - 对于所有 $i \in [1,n-2]$,都有 $u_i \neq u_{i+2}$。 求满足条件的字符串 $u$ 的个数,对 $10^9+7$ 取模。 解题思路: 这是一道比较经典的字符串构造问题,可以用 dp 或者数学方法来解决。 方法一:dp 我们可以使用 dp 来解决这个问题。设 $f_{i,j,k}$ 表示构造了前 $i$ 个字符,第 $i$ 个字符为 $j$,且第 $i-1$ 个字符为 $k$ 的方案数。其中,$j \in \{s_i,t_i\}$,$k \in \{s_{i-1},t_{i-1}\}$。 状态转移方程如下: $$f_{i,j,k} = \sum\limits_{l \in \{s_{i-2},t_{i-2}\},l \neq j} f_{i-1,k,l}$$ 最终的答案为 $\sum\limits_{j \in \{s_n,t_n\}} \sum\limits_{k \in \{s_{n-1},t_{n-1}\}} f_{n,j,k}$。 时间复杂度为 $O(n)$。 方法二:数学 我们可以定义 $a_i$ 表示以 $s_i$ 结尾,且不存在相邻字符相等的字符串的方案数;$b_i$ 表示以 $s_i$ 结尾,且存在相邻字符相等的字符串的方案数;$c_i$ 表示以 $t_i$ 结尾,且不存在相邻字符相等的字符串的方案数;$d_i$ 表示以 $t_i$ 结尾,且存在相邻字符相等的字符串的方案数。 根据题目的限制条件,我们可以得到递推式: $$\begin{cases} a_{i+1} = 2(b_i+c_i+d_i) \\ b_{i+1} = a_i \\ c_{i+1} = 2(a_i+d_i) \\ d_{i+1} = b_i \end{cases}$$ 初始状态为 $a_1=1,b_1=0,c_1=1,d_1=1$。 最终的答案为 $a_n+c_n$。 时间复杂度为 $O(n)$。 代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值