题意:中文题意见链接
分析:因为 P∪Q 为完全图。则如果 在 P 中,如果存在
a→b 和 b→c ,而不存在 a→c 的话,那么 a—c 这条边一定存在于 Q 中,不管指向那边。 因此,我们可以通过判断P∪Q 和 P∪′Q 中是否有环来判断P和Q是否同时满足传递( ′Q 为 Q 的边反向后的图)。备注:可以通过暴力搜索
P 图和 Q <script type="math/tex" id="MathJax-Element-1076">Q</script> 图中是否满足传递性拓扑代码:
/*************************************************************************
> File Name: test.cpp
> Author: Akira
> Mail: qaq.febr2.qaq@gmail.com
************************************************************************/
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <algorithm>
#include <bitset>
#include <queue>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <set>
#include <list>
#include <ctime>
#include <climits>
typedef long long LL;
typedef unsigned long long ULL;
typedef long double LD;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define Sqr(a) ((a)*(a))
using namespace std;
#define MaxN 2017
#define MaxM 2017*2017/2
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
const int mod = 1E9+7;
const double eps = 1e-6;
#define bug cout<<88888888<<endl;
#define debug(x) cout << #x" = " << x << endl;
int T,n;
char str[MaxN][MaxN];
struct Edge
{
int v,next;
}edge[MaxM];
int cont,head[MaxN], in[MaxN];
bool topo()
{
queue<int> Q;
int cnt = 0;
for(int i=1;i<=n;i++)
{
if(in[i]==0)
{
Q.push(i);
cnt++;
}
}
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v = edge[i].v;
in[v]--;
if(in[v]==0) Q.push(v),cnt++;
}
}
if(cnt<n) return false;
return true;
}
void inline init()
{
cont = 0;
MST(head,-1);
CLR(in);
}
void inline add(int u, int v)
{
in[v]++;
edge[cont].v = v, edge[cont].next = head[u], head[u] = cont++;
}
void solve()
{
init();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(str[i][j]=='P') add(i,j);
if(str[i][j]=='Q') add(i,j);
}
}
if(!topo())
{
puts("N");
return;
}
init();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(str[i][j]=='P') add(i,j);
if(str[i][j]=='Q') add(j,i);
}
}
if(!topo()) puts("N");
else puts("T");
}
int main()
{
//std::ios::sync_with_stdio(false);
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i=1;i<=n;i++)
{
scanf("%s", str[i]+1);
}
solve();
}
//system("pause");
}
- 暴力代码:
/*************************************************************************
> File Name: test.cpp
> Author: Akira
> Mail: qaq.febr2.qaq@gmail.com
************************************************************************/
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <algorithm>
#include <bitset>
#include <queue>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <set>
#include <list>
#include <ctime>
#include <climits>
typedef long long LL;
typedef unsigned long long ULL;
typedef long double LD;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define Sqr(a) ((a)*(a))
using namespace std;
#define MaxN 100001
#define MaxM MaxN*10
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
const int mod = 1E9+7;
const double eps = 1e-6;
#define bug cout<<88888888<<endl;
#define debug(x) cout << #x" = " << x << endl;
int T,n;
char str[2017][2017];
vector<int> P[MaxN], Q[MaxN];
void init()
{
for(int i=1;i<=n;i++) P[i].clear();
for(int i=1;i<=n;i++) Q[i].clear();
}
void solve()
{
bool flag = true;
for(int i=1;i<=n;i++)
{
for(int j=0;j<P[i].size()&&flag;j++)
{
int vv = P[i][j];
for(int k=0;k<P[vv].size()&&flag;k++)
{
int v = P[vv][k];
if(str[i][v-1] != 'P') flag = false;
}
}
}
//debug(flag);
for(int i=1;i<=n;i++)
{
for(int j=0;j<Q[i].size()&&flag;j++)
{
int vv = Q[i][j];
for(int k=0;k<Q[vv].size()&&flag;k++)
{
int v = Q[vv][k];
if(str[i][v-1] != 'Q') flag = false;
}
}
}
if(flag) puts("T");
else puts("N");
}
int main()
{
//std::ios::sync_with_stdio(false);
scanf("%d", &T);
while(T--)
{
init();
scanf("%d", &n);
for(int i=1;i<=n;i++)
{
scanf("%s", &str[i]);
for(int j=1;j<=n;j++)
{
if(str[i][j-1]=='P') P[i].push_back(j);
if(str[i][j-1]=='Q') Q[i].push_back(j);
}
}
//for(int i=0;i<P.size();i++) debug(P[i].u);
solve();
}
//system("pause");
}