代码随想录刷题笔记(一)
数组部分刷题笔记
数组
二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1
核心:使用while循环 每次只更新一个边界(左边界/右边界)
注意边界左闭右开 [ )
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组
核心:双指针法,for循环使用快指针去寻找目标元素,未发现目标元素则快慢指针一起移动+1,当发现元素后,只动快指针
// 时间复杂度:O(n)
// 空间复杂度:O(1)
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slowIndex = 0;
for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
if (val != nums[fastIndex]) {
nums[slowIndex++] = nums[fastIndex];
}
}
return slowIndex;
}
};
有序数组的平方
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
暴力解法:for循环逐个平方,再排序
示例 1:
- 输入:nums = [-4,-1,0,3,10]
- 输出:[0,1,9,16,100]
- 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
class Solution {
public:
vector<int> sortedSquares(vector<int>& A) {
vector<int> res(A.size(),0); //初始化,长度为A.size(),值为0
int k = A.size()-1;//k控制res的下标
for(int i = 0, j = k; i<=j;){
if(A[i]*A[i] < A[j]*A[j]){
res[k--] = A[j]*A[j];//执行完赋值 然后k--
j--;
}
else{ //A[i]*A[i] >= A[j]*A[j]
res[k--] = A[i]*A[i];//执行完赋值 然后k--
i++;
}
}
return result;
}
};
长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
- 输入:s = 7, nums = [2,3,1,2,4,3]
- 输出:2
- 解释:子数组 [4,3] 是该条件下的长度最小的子数组
两层for循环容易超时
滑动窗口
核心:使用for循环控制窗口的尾部,当满足条件时候,while循环收缩窗口头部,并更新最小窗口大小
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int res = INT32_MAX;//最小窗口长度
int subLen = 0;//当前满足条件的窗口长度
int i = 0;//窗口头部
int sum = 0;//窗口内数值之和
for(int j = 0; j < nums.size(); j++){
sum += nums[j];//逐个加
while(sum >= s){//满足条件
subLen = j-i+1;//计算当前窗口长度
res = subLen < res? subLen:res;//当前窗口是否小于已记录的最小窗口长度
sum -= nums[i];//收缩头部,看是否还满足条件
}
}
//如果是res没改变,则未找到满足条件的最小数组,返回0
return res == INT32_MAX ? 0 : res;
};
螺旋矩阵2
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
int i,j;
while (loop --) {
i = startx;//startx 和starty只是控制每轮循环的起点
j = starty;
// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for(j = starty; j < n - offset; j++){
//res[startx][j] = count++;
res[i][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for(i = startx; i < n-offset;i++){
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for(; j>starty; j--){
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for(; i>startx; i--){
//res[i][starty] = count++;
res[i][j] = count++;
}
// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;
// offset++ 控制每一圈里每一条边遍历的长度
offset++;
}
// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};
上述资料为个人学习总结笔记,学习资源来自《代码随想录》