素数的判断有一个最为朴素的算法思想就是从定义出发的试除法,也就是一些教科书上的版本,这里就不再介绍。
这里介绍的是 埃拉托斯特尼筛法 和 欧拉筛法,欧拉筛法可以说是埃氏筛法的升级版,因为少了一些重复的操作而更加高效,先来看看埃氏筛法。
埃氏筛法的思想也比较好理解,就是判断当前位置的数是否为素数,如果是,则以该数为因子的所有数均标记为合数(筛除掉 ),判断到√n的位置即可(稍加思考即可),n为数组总长度。最终剩下的未筛除的数即为素数。
埃拉托斯特尼筛法代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
const int maxn =1e7+10;
vector<int> primes;//存放素数的不定长数组
bool judge[maxn]; //筛除判断
int main()
{
int i;
memset(judge,true,sizeof(judge));
judge[0]=false;
judge[1]=false; //0和1都不是素数
for(i=2;i<maxn;i++)
{
if(i*i>maxn) //i判断到√n即可
break;
if(judge[i])
{
primes.push_back(i);
for(long long j=i*i;j<maxn;j+