素数筛法详解(欧拉筛&埃氏筛)

素数的判断有一个最为朴素的算法思想就是从定义出发的试除法,也就是一些教科书上的版本,这里就不再介绍。

这里介绍的是 埃拉托斯特尼筛法 和 欧拉筛法,欧拉筛法可以说是埃氏筛法的升级版,因为少了一些重复的操作而更加高效,先来看看埃氏筛法。

埃氏筛法的思想也比较好理解,就是判断当前位置的数是否为素数,如果是,则以该数为因子的所有数均标记为合数(筛除掉 ),判断到√n的位置即可(稍加思考即可),n为数组总长度。最终剩下的未筛除的数即为素数。

埃拉托斯特尼筛法代码:

#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;

const int maxn =1e7+10;
vector<int> primes;//存放素数的不定长数组
bool judge[maxn]; //筛除判断

int main()
{
    int i;
    memset(judge,true,sizeof(judge));
    judge[0]=false;
    judge[1]=false;     //0和1都不是素数
    for(i=2;i<maxn;i++)
    {
        if(i*i>maxn)   //i判断到√n即可
            break;
        if(judge[i])
        {
            primes.push_back(i);
            for(long long j=i*i;j<maxn;j+
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值