注水算法解功率分配问题-Python

本文介绍了如何通过注水法解决无线通信中将总功率PPP分配给NNN个发射机以最大化总接收通信速率的问题。通过数学建模和KKT条件,展示了如何计算最优功率分配,并提供了Python代码实现。核心概念包括信道增益、噪声功率、信道带宽和拉格朗日乘子法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

分配总功率 P P P N N N个发射机,使总接收通信速率最大。

问题建模为:
m i n p   − ∑ i N W l o g 2 ( 1 + h i p i σ 2 ) s . t .    ∑ i N p i = P          p i ≥ 0 \begin{aligned} &\mathop{\mathrm{min}}\limits_{\mathbf{p} }~ -\sum_{i}^N Wlog_2(1+\frac{h_i p_i}{\sigma^2}) \\ &\mathrm{s.t.}~~ \sum_{i}^Np_i=P \\ &~~~~~~~~p_i\geq 0 \end{aligned} pmin iNWlog2(1+σ2hipi)s.t.  iNpi=P        pi0
其中 σ 2 \sigma^2 σ2为接收机的噪声功率, W W W为信道带宽, P P P为发射机的总功率, p i p_i pi为分给第 i i i个接收机、信道增益为 h i h_i hi的发射功率。

对等式约束引入一个乘子 v ∈ R v \in \mathbb{R} vR,对不等式约束引入乘子 λ ∈ R N \mathbf{\lambda}\in \mathbb{R}^N λRN,得到Lagrange函数 L L L:
L ( p , λ , v ) = − ∑ i N W l o g 2 ( 1 + h i p i σ 2 ) − ∑ i N λ p i + v ( ∑ i N p i − P ) \begin{aligned} L(\mathbf{p},\mathbf{\lambda},v)=-\sum_{i}^N Wlog_2(1+\frac{h_i p_i}{\sigma^2})-\sum_{i}^N\lambda p_i+v(\sum_{i}^Np_i-P) \\ \end{aligned} L(p,λ,v)=iNWlog2(1+σ2hipi)iNλpi+v(iNpiP)

p ∗ \mathbf{p}^* p ( λ ∗ , v ∗ ) (\mathbf{\lambda}^*, v^*) (λ,v)分别为原问题和对偶问题的某对最优解,则得到如下KKT条件:

∑ i N p i ∗ = P p i ∗ ≥ 0 ,   i = 1 , . . . , N λ i ∗ ≥ 0 ,   i = 1 , . . . , N λ i ∗ p i ∗ = 0 ,   i = 1 , . . . , N − W log ⁡ 2 e σ 2 / h i + p i ∗ − λ i ∗ + v ∗ = 0   i = 1 , . . . , N \begin{aligned} &\sum_{i}^Np_i^*=P\\ &p_i^*\geq 0,~i=1,...,N\\ &\lambda_i^*\geq 0,~i=1,...,N\\ &\lambda_i^* p_i^*=0,~i=1,...,N\\ &-\frac{W\log_2e}{\sigma^2/h_i+p_i^*}-\lambda_i^*+v^*=0~i=1,...,N\\ \end{aligned} iNpi=Ppi0, i=1,...,Nλi0, i=1,...,Nλipi=0, i=1,...,Nσ2/hi+piWlog2eλi+v=0 i=1,...,N

最优解之间满足:
p i ∗ = { W log ⁡ 2 e v ∗ − σ 2 h i v ∗ < W log ⁡ 2 e σ 2 / h i 0 v ∗ ≥ W log ⁡ 2 e σ 2 / h i p_{i}^*= \begin{cases} \frac{W\log_2 e}{v^*}-\frac{\sigma^2}{h_i} &v^*<\frac{W\log_2 e}{\sigma^2/h_i}\\ 0&v^*\geq \frac{W\log_2 e}{\sigma^2/h_i} \end{cases} pi={vWlog2ehiσ20v<σ2/hiWlog2evσ2/hiWlog2e

或者,更简洁地, p i ∗ = max ⁡ { 0 , W log ⁡ 2 e v ∗ − σ 2 h i } p_i^*=\max \{0,\frac{W\log_2e}{v^*}-\frac{\sigma^2}{h_i}\} pi=max{0,vWlog2ehiσ2}。将 p i ∗ p_i^* pi带入条件 ∑ i N p i ∗ = P \sum_{i}^Np_i^*=P iNpi=P得到:
∑ i N max ⁡ { 0 , W log ⁡ 2 e v ∗ − σ 2 h i } = P \sum_i^N \max \{0,\frac{W\log_2e}{v^*}-\frac{\sigma^2}{h_i}\}=P iNmax{0,vWlog2ehiσ2}=P
方程左端是 W log ⁡ 2 e v ∗ \frac{W\log_2e}{v^*} vWlog2e的分段线性增函数,分割点为 σ 2 / h i \sigma^2/h_i σ2/hi,因此上述方程有唯一确定的解。

上述解决问题的方法称为注水。这是因为,可以将 σ 2 / h i \sigma^2/h_i σ2/hi看做第 i i i片区域的水平线,然后对整个区域注水,使其具有深度 W log ⁡ 2 e v ∗ \frac{W\log_2e}{v^*} vWlog2e,所需的总水量为 ∑ i N max ⁡ { 0 , W log ⁡ 2 e v ∗ − σ 2 h i } \sum_i^N \max \{0,\frac{W\log_2e}{v^*}-\frac{\sigma^2}{h_i}\} iNmax{0,vWlog2ehiσ2},不断注水,直至总水量为 P P P。第 i i i个区域的水位深度即为最优 p i ∗ p_i^* pi

在这里插入图片描述

上述解需要确定水位 log ⁡ 2 e v ∗ \frac{\log_2 e}{v^*} vlog2e,编程上的思想为:

  • 以最差信道的高度 log ⁡ 2 e σ 2 / h w o r s t \frac{\log_2 e}{\sigma^2/h_{worst}} σ2/hworstlog2e作为水位,注水(分配功率)
  • 若注水到该水位时功率有剩余,则均分剩余功率;
  • 若水量不足,则移除该最差信道(即不分配功率),重复以上操作。

Python代码:

# -*- coding: utf-8 -*-
"""
2021.01.29 注水法进行功率分配
注水法代码参考 https://pyphysim.readthedocs.io/en/latest/_modules/pyphysim/comm/waterfilling.html
"""

import numpy as np

def waterfilling(Channels, TotalPower, NoisePower):
    """ 注水算法进行功率分配
        Channels: 信道增益
        TotalPower: 待分配的总发射功率
        NoisePower: 接收端的噪声功率
    
    Returns:
        Powers: optimum powers (分配的功率)
        mu: water level (水位)
    """
    ### 降序排列信道增益
    Channels_SortIndexes = np.argsort(Channels)[::-1]
    Channels_Sorted = Channels[Channels_SortIndexes]
    """
    计算接触最差信道的水位,对这个最差的信道分配零功率。
    此后,按此水位为每个信道分配功率,
        如果功率之和少于总功率,则均分剩余功率给各个信道(增加水位);
        如果功率之和多于总功率,则移除最坏信道,重复操作
    """
    N_Channels = Channels.size ## 总信道数
    N_RemovedChannels = 0  ## 移除的信道数
    ## 按最差信道计算最低水位
    WaterLevel = NoisePower / (Channels_Sorted[N_Channels-N_RemovedChannels-1])
    Powers = WaterLevel - (NoisePower /Channels_Sorted[np.arange(0, N_Channels - N_RemovedChannels)])
    
    ## 当功率之和多于总功率时,移除最坏信道,直至总功率够分
    while (sum(Powers)>TotalPower) and (N_RemovedChannels<N_Channels):
        N_RemovedChannels += 1
        WaterLevel = NoisePower / (Channels_Sorted[N_Channels-N_RemovedChannels-1])
        Powers = WaterLevel - (NoisePower /Channels_Sorted[np.arange(0, N_Channels - N_RemovedChannels)])
    
    ## 将剩余的功率均分给各个(剩余的)信道
    Power_Remine = TotalPower-np.sum(Powers)
    Powers_Opt_Temp = Powers + Power_Remine/(N_Channels - N_RemovedChannels)
    
    ## 将功率分配情况按原信道顺序排列
    Powers_Opt = np.zeros([N_Channels])
    Powers_Opt[Channels_SortIndexes[np.arange(0, N_Channels-N_RemovedChannels)]] = Powers_Opt_Temp
    
    WaterLevel = Powers_Opt_Temp[0] + NoisePower / Channels_Sorted[0]
    
    return Powers_Opt, WaterLevel

if __name__ == '__main__':
    """  测试代码
    """
    power_Noise = 1e-8
    channels = np.random.random(10)*1e-10
    alpha = power_Noise/np.array(channels)
    power_Tx = 1000
    powers,waterlevel = waterfilling(np.array(channels), power_Tx, power_Noise)
    print(powers,waterlevel)

    import matplotlib
    import matplotlib.pylab as plt
#    %matplotlib inline
    
    matplotlib.rcParams.update({'font.size': 14})
    buckets = channels.size
    axis = np.arange(0.5,buckets+1.5,1)
    index = axis+0.5
    X = powers.copy()
    Y = alpha+ X
    
    # to include the last data point as a step, we need to repeat it
    A = np.concatenate((alpha,[alpha[-1]]))
    X = np.concatenate((X,[X[-1]]))
    Y = np.concatenate((Y,[Y[-1]]))
    
    plt.xticks(index)
    plt.xlim(0.5,buckets+0.5)
#    plt.ylim(0,1.5)
    plt.step(axis,A,where='post',label =r'$\sigma^2/h_i$',lw=2)
    plt.step(axis,Y,where='post',label=r'$\sigma^2/h_i + p_i$',lw=2)
    plt.legend(loc='upper left')
    plt.xlabel('Bucket Number')
    plt.ylabel('Power Level')
    plt.title('Water Filling Solution')
    plt.show()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值