Hue(01)——Hue概述

HUE是什么?

HUE=Hadoop User Experience
Hue是一个开源的Apache Hadoop UI系统,由Cloudera Desktop演化而来,最后Cloudera公司将其贡献给Apache基金会的Hadoop社区,它是基于Python Web框架Django实现的。
通过使用Hue我们可以在浏览器端的Web控制台上与Hadoop集群进行交互来分析处理数据,例如操作HDFS上的数据,运行MapReduce Job,执行Hive的SQL语句,浏览HBase数据库等等。
网址:
• Site: http://gethue.com/
• Github: https://github.com/cloudera/hue
• Reviews: https://review.cloudera.org

Hue的架构

在这里插入图片描述

Hue支持的功能

Hue是一个友好的界面集成框架。可以继承各种Hadoop生态圈框架,并通过界面查看执行相关命令。

SQL编辑器,支持Hive, Impala, MySQL, Oracle, PostgreSQL, SparkSQL, Solr SQL, Phoenix…
搜索引擎Solr的各种图表
Spark和Hadoop的友好界面支持
支持调度系统Apache Oozie,可进行workflow的编辑、查看。

1,访问HDFS和文件浏览
2,通过web调试和开发hive以及数据结果展示
3,查询solr和结果展示,报表生成
4,通过web调试和开发impala交互式SQL Query
5,spark调试和开发
7,oozie任务的开发,监控,和工作流协调调度
8,Hbase数据查询和修改,数据展示
9,Hive的元数据(metastore)查询
10,MapReduce任务进度查看,日志追踪
11,创建和提交MapReduce,Streaming,Java job任务
12,Sqoop2的开发和调试
13,Zookeeper的浏览和编辑
14,数据库(MySQL,PostGres,SQlite,Oracle)的查询和展示

### YOLOv5 数据增强方法概述 YOLOv5 是一种高效的实时目标检测算法,在训练过程中,数据增强技术可以显著提升模型的泛化能力和鲁棒性。以下是几种常见的用于 YOLOv5 的数据增强方式及其实现方法: #### 1. Mosaic 增强 Mosaic 数据增强是一种通过组合四张图片来生成一张新图的技术。这种方法能够增加样本多样性并减少过拟合的风险[^1]。 在 YOLOv5 中,默认启用了 Mosaic 增强功能。可以通过修改配置文件 `data.yaml` 或者调整源码中的参数来控制其启用状态。 ```python # 在 train.py 文件中找到 mosaic 参数设置位置 mosaic = True # 设置为 False 可禁用该功能 ``` #### 2. MixUp 增强 MixUp 方法通过对两张图像按一定比例混合,并将其标签也按照相同的比例加权平均,从而生成新的训练样例[^2]。此方法有助于平滑决策边界,提高模型性能。 ```yaml # data/hyp.scratch-low.yaml 配置文件中可调节 mixup 概率 mixup: 0.0 # 将数值设为大于零即可开启混叠模式 ``` #### 3. CutOut 和 Random Erasing CutOut 技术随机遮挡输入图像的一部分区域;而 Random Erasing 则进一步扩展了这一理念——不仅限于矩形形状还允许自定义填充颜色等属性[^3]。这两种策略均能有效防止网络过分依赖某些局部特征来进行预测判断。 ```python from albumentations import Compose, Cutout augmentation_pipeline = Compose([ Cutout(num_holes=8, max_h_size=8, max_w_size=8, p=0.5), ]) ``` #### 4. HSV 色彩空间变换 Hue (色调), Saturation(饱和度),Value(亮度)三个维度上的扰动操作可以让模型更好地适应不同光照条件下的场景变化[^4]。 ```python def augment_hsv(img, hgain=0.015, sgain=0.7, vgain=0.4): r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype # uint8 x = np.arange(0, 256, dtype=np.int16) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], None, 255).astype(dtype) lut_val = np.clip(x * r[2], None, 255).astype(dtype) img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) return cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR) ``` --- ### 实现注意事项 为了确保上述各种增强手段正常工作,请务必确认以下几点: - 训练脚本路径下存在对应的超参设定文档; - 自定义增强逻辑需集成到官方框架既定流程里去执行; - 测试阶段建议关闭所有复杂的数据预处理措施以便评估基础架构表现如何。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值