文章目录
1.什么是AVL树
今天我们来讲一讲AVL树,AVL树是二叉搜索树的优化版,又称平衡二叉搜索树,高度平衡树。我们都
知道,当一棵二叉搜索树的结点一直单边插入时,这时候它的查找效率趋近于O(n),非常慢。
而AVL树的特点是:“AVL树中任何结点的两个子树的高度最大差别为1” ,这样就克服了结点单边存储
而导致查找效率低下的问题。
如上图,左边是AVL树,右侧为非AVL树,右子树高度减去左子树的高度(简称平衡因子)的绝对值不超
过1(-1/0/1),而非AVL树则做不到这一点。每当新插入一个结点后,都要检查是否保持这一原则,如
果某结点的高度差绝对值超过了1,那么就要通过旋转来重新恢复AVL树。AVL树当中最需要弄清楚的
2个问题,1个就是平衡因子的控制,另一个就是学会AVL的旋转。
2.AVL树结点的定义
template<class K>
struct AVLTreeNode
{
K _key;//节点内的值
AVLTreeNode<K>* _left;//左子树节点
AVLTreeNode<K>* _right;//右子树节点
AVLTreeNode<K>* _parent;//双亲节点
int _bf;//平衡因子
AVLTreeNode(const K& key)
:_left(NULL)
, _right(NULL)
, _parent(NULL)
, _key(key)
, _bf(0)
{}
};
上面的便是AVL树的结点的结构,其实和普通的二叉搜索树也就是加入了一个平衡因子而已,但别小
看这个平衡因子,他可能在下面的学习里会让你头疼一会儿了.
3.AVL树的平衡因子
根据上面的讲解,我们直到,平衡因子的值是当前结点右子树的高度减去左子树的高度,所以计算平
衡因子前我们还要有一个计算子树高度的函数Height(),函数GetBf()用于计算平衡因子。
size_t Height(Node* root)//计算树的高度
{
if (root == nullptr)
{
return 0;
}
size_t leftHeight = Height(root->_left);
size_t rightHeight = Height(root->_right);
return leftHeight > rightHeight ? (leftHeight + 1) : (rightHeight + 1);
}
void GetBf(Node *root)//计算平衡因子
{
if (root == nullptr)
{
return;
}
root->_bf = Height(root->_right) - Height(root->_left);
if (abs(root->_bf) > 1)
{
std::cout << "节点" << root->_key << "的平衡因子有误!" << std::endl;
}
GetBf(root->_left);
GetBf(root->_right);
}
4.AVL树的插入
AVL树的插入也属于AVL树的一个重头戏,因为他糅合了二叉树的插入,AVL树的旋转,平衡因子的修
改等多个知识点。下面我们来系统的说一下AVL树的插入。
AVL树的插入分如下几个步骤
-
像二叉搜索树那样将数据插入到树中。
-
更新父结点的平衡因子,验证插入结点及其父亲结点的平衡因子是否正确,不正确则调用适当的旋
转函数。
-
使用“左单旋”,“右单旋”,“左右双旋”,“右左双旋” 4种方式的一种旋转树,并更新平衡因子的值。
4.1将数据插入到树中
//1.判断空树
if (_root == nullptr)
{
_root = new Node(key);
return true;
}
//2.查找位置
Node* cur = _root;
Node * parent = nullptr;
while (cur)
{
if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;//节点已经存在
}
}
//3.插入数据
cur = new Node(key);
if (parent->_key > key)
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
这段没什么好说的,直接贴上代码。
4.2更新父结点平衡因子的值,并验证是否正确,不正确则选择适当的旋转方式
//4.验证平衡因子的值
while (parent)
{
if (cur == parent->_left)
{
--(parent->_bf);
}
else
{
++(parent->_bf);
}
if (parent->_bf == 0)//说明之前的平衡因子值为-1或1,此时满足AVL树特性,调整结束
{
break;
}
else if (abs(parent->_bf) == 1)//说明之前的平衡因子值为0,需要向上调整。
{
cur = cur->_parent;
parent = parent->_parent;
}
else if (abs(parent->_bf) == 2)//说明已经不满足AVL树的特性,选择适当旋转方式
{
if ((parent->_bf == -2) && (cur->_bf == -1))//右单旋
{
_RotateR(parent);
}
if ((parent->_bf == 2) && (cur->_bf == 1))//左单旋
{
_RotateL(parent);
}
if ((parent->_bf == -2) && (cur->_bf == 1))//左右双旋
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
_RotateL(parent->_left);
_RotateR(parent);
subLR->_bf = 0;
if (bf == 1)
{
subL->_bf = -1;
parent->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = 0;
}
}
if ((parent->_bf == 2) && (cur->_bf == -1))//右左双旋
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
_RotateR(parent->_right);
_RotateL(parent);
subRL->_bf = 0;
if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 0;