浅析AVL树

本文深入探讨AVL树,一种高度平衡的二叉搜索树。重点介绍了AVL树的插入操作,包括如何计算平衡因子、判断是否需要旋转及执行左单旋、右单旋、左右双旋、右左双旋等旋转操作,以保持树的平衡。
摘要由CSDN通过智能技术生成

1.什么是AVL树

今天我们来讲一讲AVL树,AVL树是二叉搜索树的优化版,又称平衡二叉搜索树,高度平衡树。我们都

知道,当一棵二叉搜索树的结点一直单边插入时,这时候它的查找效率趋近于O(n),非常慢。

而AVL树的特点是:“AVL树中任何结点的两个子树的高度最大差别为1” ,这样就克服了结点单边存储

而导致查找效率低下的问题。

在这里插入图片描述

如上图,左边是AVL树,右侧为非AVL树,右子树高度减去左子树的高度(简称平衡因子)的绝对值不超

过1(-1/0/1),而非AVL树则做不到这一点。每当新插入一个结点后,都要检查是否保持这一原则,如

果某结点的高度差绝对值超过了1,那么就要通过旋转来重新恢复AVL树。AVL树当中最需要弄清楚的

2个问题,1个就是平衡因子的控制,另一个就是学会AVL的旋转。

2.AVL树结点的定义

template<class K>
struct AVLTreeNode
{
	K _key;//节点内的值

	AVLTreeNode<K>* _left;//左子树节点
	AVLTreeNode<K>* _right;//右子树节点
	AVLTreeNode<K>* _parent;//双亲节点

	int _bf;//平衡因子

	AVLTreeNode(const K& key)
		:_left(NULL)
		, _right(NULL)
		, _parent(NULL)
		, _key(key)
		, _bf(0)
	{}
};

上面的便是AVL树的结点的结构,其实和普通的二叉搜索树也就是加入了一个平衡因子而已,但别小

看这个平衡因子,他可能在下面的学习里会让你头疼一会儿了.

3.AVL树的平衡因子

根据上面的讲解,我们直到,平衡因子的值是当前结点右子树的高度减去左子树的高度,所以计算平

衡因子前我们还要有一个计算子树高度的函数Height(),函数GetBf()用于计算平衡因子。

size_t Height(Node* root)//计算树的高度
	{
		if (root == nullptr)
		{
			return 0;
		}

		size_t leftHeight = Height(root->_left);
		size_t rightHeight = Height(root->_right);

		return leftHeight > rightHeight ? (leftHeight + 1) : (rightHeight + 1);

	}
	void GetBf(Node *root)//计算平衡因子
	{
		if (root == nullptr)
		{
			return;
		}
		root->_bf = Height(root->_right) - Height(root->_left);
		if (abs(root->_bf) > 1)
		{
			std::cout << "节点" << root->_key << "的平衡因子有误!" << std::endl;
		}

		GetBf(root->_left);
		GetBf(root->_right);

	}

4.AVL树的插入

AVL树的插入也属于AVL树的一个重头戏,因为他糅合了二叉树的插入,AVL树的旋转,平衡因子的修

改等多个知识点。下面我们来系统的说一下AVL树的插入。

AVL树的插入分如下几个步骤

  1. 像二叉搜索树那样将数据插入到树中。

  2. 更新父结点的平衡因子,验证插入结点及其父亲结点的平衡因子是否正确,不正确则调用适当的旋

    转函数。

  3. 使用“左单旋”,“右单旋”,“左右双旋”,“右左双旋” 4种方式的一种旋转树,并更新平衡因子的值。

4.1将数据插入到树中
	//1.判断空树
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;

		}
		//2.查找位置
		Node* cur = _root;
		Node * parent = nullptr;

		while (cur)
		{
			if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;//节点已经存在
			}
		}
		//3.插入数据
		cur = new Node(key);
		if (parent->_key > key)
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			cur->_parent = parent;
		}

这段没什么好说的,直接贴上代码。

4.2更新父结点平衡因子的值,并验证是否正确,不正确则选择适当的旋转方式
//4.验证平衡因子的值

		while (parent)
		{
			if (cur == parent->_left)
			{
				--(parent->_bf);
			}
			else
			{
				++(parent->_bf);
			}
			if (parent->_bf == 0)//说明之前的平衡因子值为-1或1,此时满足AVL树特性,调整结束
			{
				break;
			}
			else if (abs(parent->_bf) == 1)//说明之前的平衡因子值为0,需要向上调整。
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}
			else if (abs(parent->_bf) == 2)//说明已经不满足AVL树的特性,选择适当旋转方式
			{
				if ((parent->_bf == -2) && (cur->_bf == -1))//右单旋
				{
					_RotateR(parent);
				}
				if ((parent->_bf == 2) && (cur->_bf == 1))//左单旋
				{
					_RotateL(parent);
				}
				if ((parent->_bf == -2) && (cur->_bf == 1))//左右双旋
				{
					Node* subL = parent->_left;
					Node* subLR = subL->_right;
					int bf = subLR->_bf;

					_RotateL(parent->_left);
					_RotateR(parent);

					subLR->_bf = 0;
					if (bf == 1)
					{
						subL->_bf = -1;
						parent->_bf = 0;
					}
					else if (bf == -1)
					{
						parent->_bf = 1;
						subL->_bf = 0;
					}
					

				}
				if ((parent->_bf == 2) && (cur->_bf == -1))//右左双旋
				{

					Node* subR = parent->_right;
					Node* subRL = subR->_left;
					int bf = subRL->_bf;

					_RotateR(parent->_right);
					_RotateL(parent);

					subRL->_bf = 0;
					if (bf == 1)
					{
						subR->_bf = 0;
						parent->_bf = -1;
					}
					else if (bf == -1)
					{
						parent->_bf = 0;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值