数论概论读书笔记 11.欧拉函数与中国剩余定理

欧拉函数与中国剩余定理

欧拉公式

aφ(m)1(modm) a φ ( m ) ≡ 1 ( m o d m )

很美

但是,我们使用这个公式时不可避免要计算 φ(m) φ ( m )

一种简单的方法是枚举1~m-1来检查是否互质,但是当m几十位上百位时,这种方法就不可行了

我们试着去寻找一些规律

首先,当m是一个素数时, φ(p)=p1 φ ( p ) = p − 1 这很自然

m=pk m = p k 时,考虑 1pk 1 ∼ p k 之间与p互质的数的个数。由于p是质数,则其间只有能被p整除的那些数不与 pk p k 互质

这些数共有多少个呢?显然是 pk/p p k / p 个 即 Pk1 P k − 1

所以得到

φ(pk)=pkpk1p is prime here φ ( p k ) = p k − p k − 1 p   i s   p r i m e   h e r e

现在素数和素数的幂我们已经解决了

看看还能不能找出其他规律

通过之前的同余、费马小定理、欧拉公式,我们可以看出互质在这里非常重要,下面找一些例子看看

我们知道如果p、q是素数,则 pj p j qk q k 也是互质的 ,如下所示

img

从这个表可以看出 φ(pjqk)=φ(pj)φ(qk) φ ( p j q k ) = φ ( p j ) φ ( q k )

再尝试一些不是素数次幂互质的例子,如 φ(14)=6φ(15)=8φ(210)=48 φ ( 14 ) = 6 φ ( 15 ) = 8 φ ( 210 ) = 48

于是我们猜测下述断言成立

如果gcd(m,n)=1 则 φ(mn)=φ(m)φ(n) φ ( m n ) = φ ( m ) φ ( n ) 这个公式会很有用

它为我们提供了快捷计算欧拉函数的方法:

对于一个整数m,进行质因数分解可得

m=pk11pk22pkrr m = p 1 k 1 ⋅ p 2 k 2 ⋅ ⋅ ⋅ p r k r

由于是不同的素数底数,所以之间是互质的

于是得到

φ(m)=φ(pk11)φ(pk22)φ(pkrr) φ ( m ) = φ ( p 1 k 1 ) ⋅ φ ( p 2 k 2 ) ⋅ ⋅ ⋅ φ ( p r k r )

φ(pk)=pkpk1 φ ( p k ) = p k − p k − 1 所以带入后即可直接计算

总结一下 φ φ 函数公式

定理11.1 ( φ φ 函数公式).

(a)如果p是素数且 k1 k ⩾ 1 φ(pk)=pkpk1 φ ( p k ) = p k − p k − 1

(b)如果gcd(m,n)=1 则 φ(mn)=φ(m)φ(n) φ ( m n ) = φ ( m ) φ ( n )

证明 只要证明b

有两个集合,第一个集合是

{a:1amn,gcd(a,mn)=1} { a : 1 ⩽ a ⩽ m n , g c d ( a , m n ) = 1 }

这个集合有 φ(mn) φ ( m n ) 个元素

第二个集合是

{(b,c):1bm, gcd(b,m)=1,1cn, gcd(c,n)=1} { ( b , c ) : 1 ⩽ b ⩽ m ,   g c d ( b , m ) = 1 , 1 ⩽ c ⩽ n ,   g c d ( c , n ) = 1 }

这个集合有 φ(m)φ(n) φ ( m ) ∗ φ ( n ) 个元素

只要证明两个集合的元素是一一对应的,那么这两个集合的元素就是相等的。考虑下面两个角度

①第一个集合的每个元素,在第二个集合中都能找到对应项。

②第二个集合的每个元素在第一个集合中都有原项。

下面分别证明两点

①首先, gcd(a,mn)=1 g c d ( a , m n ) = 1 则(a,m)=(a,n)=1 那么 (a%m,m)=(a%n,n)=1 ( a % m , m ) = ( a % n , n ) = 1 即在第二个集合一定能找到对应

可能出现多对一吗?假设存在设为 ai,aj a i , a j aiaj(modm) a i ≡ a j ( m o d m ) aiaj(modn) a i ≡ a j ( m o d n )

m|(aiaj) m | ( a i − a j ) n|(aiaj) n | ( a i − a j )

又m,n互质

mn|(aiaj) m n | ( a i − a j )

ai,aj[1,mn1] a i , a j ∈ [ 1 , m n − 1 ] 之间的 所以 ai=aj a i = a j

即第一个集合的不同数对应第二个集合的不同序对

②对于b,c的已知值,至少可以求得一个整数a满足

ab(modm)ac(modn) a ≡ b ( m o d m ) a ≡ c ( m o d n )

这个同余式组 一定有解 的事实非常重要,以至于有自己的名称

定理11.2(中国剩余定理). 设m与n是整数,gcd(m,n)=1,b与c是任意整数

则同余式组

xb(mod m)xc(modn) x ≡ b ( m o d   m ) 与 x ≡ c ( m o d n )

恰有一个解 0x<mn 0 ⩽ x < m n

证明根据线性方程定理 见书p53

(带入思想)

习题

11.2 φ(m)m>=3 φ ( m ) m >= 3 φ(m) φ ( m ) 为偶数

11.3 试证明

φ(m)=m(11p1)(11p2)...(11pr) φ ( m ) = m ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p r )

解答 : φ φ 函数公式唯一分解定理可简单证明

11.9 m1,m2,m3两两互质

设a1,a2,a3是任意3个整数,证明同余式组

xa1(modm1),xa2(modm2),xa3(modm3) x ≡ a 1 ( m o d m 1 ) , x ≡ a 2 ( m o d m 2 ) , x ≡ a 3 ( m o d m 3 )

在区间 0x<m1m2m3 0 ⩽ x < m 1 m 2 m 3 恰有一个整数解 x x

带入思想

试推广到更多同余式

求出方程组xai(mod mi)(0i<n) 的解x

其中 m0,m1,m2,m3...mn1 m 0 , m 1 , m 2 , m 3 . . . m n − 1 两两互质

解:

Mi=jimj M i = ∏ j ≠ i m j 则有 (Mi,mi)=1 ( M i , m i ) = 1

故存在 pi,qi p i , q i ,使得 Mipi+miqi=1 M i ∗ p i + m i ∗ q i = 1

ei=Mipi e i = M i p i , pi p i 即为 Mi M i mi m i 下的逆元 (Mi,mi)=1 ( M i , m i ) = 1

则有
$$
e_i\equiv

\left{

0(mod mj),ji1(mod mj),j=i 0 ( m o d   m j ) , j ≠ i 1 ( m o d   m j ) , j = i
\right.
$$
故$e_0a_0+e_1a_1+e_2a_2+…+e_{n-1}a_{n-1}$是方程的一个解

中国剩余定理知, [0n1i=0mi} [ 0 ∼ ∏ i = 0 n − 1 m i } 中必有一解

将上式模 n1i=0mi ∏ i = 0 n − 1 m i 即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值