(9)欧拉函数与中国剩余定理

欧拉 ϕ \phi ϕ函数与中国剩余定理

上一章我们证明了欧拉公式

a ϕ ( m ) ≡ 1 ( m o d    m ) a^{\phi(m)}\equiv1(\mod m) aϕ(m)1(modm)

但除非能找到计算 ϕ ( m ) \phi(m) ϕ(m)的有效方法,否则它的用途不能发挥出来。显然我们不想列出1到 ϕ ( m ) \phi(m) ϕ(m)的所有整数来一一验证。但正如我们前一章看到的容易计算 ϕ ( m ) \phi(m) ϕ(m)的一种情况是 m = p m=p m=p为素数时,这是因为每一个整数 1 ≤ a ≤ p − 1 1\le a\le p-1 1ap1与m互素。因此

ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1

m = p k m=p^k m=pk时,即m是素数幂次时,可以推出类似的公式。 p k p^k pk是仅有因数是p的幂次,所以,当a被p整除时a不与 p k p^k pk互素,即

ϕ ( p k ) = p k − # { a : 1 ≤ a ≤ p k , p ∣ a } \phi(p^k)=p^k-\#\{a:1\le a\le p^k,p\mid a\} ϕ(pk)=pk#{a:1apk,pa}

因此必须计数1与 p k p^k pk之间有多少个整数被p整除。这是容易的,下述数是p的倍数:

p , 2 p , 3 p , 4 p , ⋯   , ( p k − 1 − 2 ) p , ( p k − 1 − 1 ) p , p k p,2p,3p,4p,\cdots,(p^{k-1}-2)p,(p^{k-1}-1)p,p^k p,2p,3p,4p,,(pk12)p,(pk11)p,pk

它们有 p k − 1 p^{k-1} pk1个,这就给出公式

ϕ ( p k ) = p k − p k − 1 \phi(p^k)=p^k-p^{k-1} ϕ(pk)=pkpk1

例如

ϕ ( 2401 ) = ϕ ( 7 4 ) = 7 4 − 7 3 = 2058 \phi(2401)=\phi(7^4)=7^4-7^3=2058 ϕ(2401)=ϕ(74)=7473=2058

这表明在1到2401之间有2058个整数与2401互素。

上面得出了 m = p k m=p^k m=pk时,如果m是两个素数幂次积 m = p j q k m=p^jq^k m=pjqk时,是不是也有公式可循。我们计算一些较小的值,写入表中进行观察。

p j p^j pj q k q^k qk p j q k p^jq^k pjqk ϕ ( p j ) \phi(p^j) ϕ(pj) ϕ ( q k ) \phi(q^k) ϕ(qk) ϕ ( p j q k ) \phi(p^jq^k) ϕ(pjqk)
236122
4520248
37212612
89724624
925225620120

观察发现了 ϕ ( p j q k ) = ϕ ( p j ) ϕ ( q k ) \phi(p^jq^k)=\phi(p^j)\phi(q^k) ϕ(pjqk)=ϕ(pj)ϕ(qk)。所以我们可以断言

g c d ( m , n ) = 1 , ϕ ( m n ) = ϕ ( m ) ϕ ( n ) gcd(m,n)=1,\phi(mn)=\phi(m)\phi(n) gcd(m,n)=1,ϕ(mn)=ϕ(m)ϕ(n)

ϕ \phi ϕ函数公式

(a)如果p是素数且 k ≥ 1 k\ge1 k1,则

ϕ ( p k ) = p k − p k − 1 \phi(p^k)=p^k-p^{k-1} ϕ(pk)=pkpk1

(b)如果 g c d ( m , n ) = 1 gcd(m,n)=1 gcd(m,n)=1,则 ϕ ( n m ) = ϕ ( n ) ϕ ( m ) \phi(nm)=\phi(n)\phi(m) ϕ(nm)=ϕ(n)ϕ(m)
证明我们在本章前面证明了素数幂公式(a),因此余下的便是要证明乘法公式(b)。为此我们使用数论中最有力的工具之一:计数。
我们找一个包含 ϕ ( m n ) \phi(mn) ϕ(mn)个元素的集合,再找一个包含 ϕ ( m ) ϕ ( n ) \phi(m)\phi(n) ϕ(m)ϕ(n)个元素的第二个集合,然后证明这两个集合包含个数相同的元素。
第一个集合是

{ a : 1 ≤ a ≤ m n , g c d ( a , m n ) = 1 } \{ a:1\le a\le mn,gcd(a,mn)=1\} {a:1amn,gcd(a,mn)=1}

显然,这个集合包含 ϕ ( m n ) \phi(mn) ϕ(mn)个元素,因为这正好是 ϕ ( m n ) \phi(mn) ϕ(mn)的定义。第二个集合是

{ ( b , c ) : 1 ≤ b ≤ m , g c d ( b , m ) = 1 , 1 ≤ c ≤ n , g c d ( c , n ) = 1 } \{(b,c):1\le b\le m,gcd(b,m)=1,1\le c\le n,gcd(c,n)=1 \} {(b,c):1bm,gcd(b,m)=1,1cn,gcd(c,n)=1}

第二个集合含有 ϕ ( m ) ϕ ( n ) \phi(m)\phi(n) ϕ(m)ϕ(n)个序对。
假如,假设取 m = 4 m=4 m=4 n = 5 n=5 n=5。则第一个集合由与20互素的数

{ 1 , 3 , 7 , 9 , 11 , 13 , 17 , 19 } \{1,3,7,9,11,13,17,19\} {1,3,7,9,11,13,17,19}

组成,第二个集合由序对

{ ( 1 , 1 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 3 , 1 ) , ( 3 , 2 ) , ( 3 , 3 ) , ( 3 , 4 ) } \{(1,1),(1,2),(1,3),(1,4),(3,1),(3,2),(3,3),(3,4)\} {(1,1),(1,2),(1,3),(1,4),(3,1),(3,2),(3,3),(3,4)}

组成,其中每个序对的第一个数与4互素,第二个数与5互素。

a m o d    m n   − > ( a m o d    m , a m o d    n ) a\mod mn\ ->(a\mod m,a\mod n) amodmn >(amodm,amodn)

如果要证明这两个集合一一对应,我们需要证明下面的两个陈述是正确的:
(1)第一个集合的不同数对应第二个集合的不同序对。
(2)第二个集合的每个序对适合第一个集合的某个数。
要验证(1),我们取第一个集合的两个数 a 1 a_1 a1 a 2 a_2 a2,假设它们在第二个集合由相同的象,这意味着

a 1 ≡ a 2 ( m o d    m ) 与 a 1 ≡ a 2 ( m o d    n ) a_1\equiv a_2(\mod m)与a_1\equiv a_2(\mod n) a1a2(modm)a1a2(modn)

因此, a 1 − a 2 a_1-a_2 a1a2被m与n整除。然而,m与n互素,因此 a 1 − a 2 a_1-a_2 a1a2一定被mn整除。换句话说,

a 1 ≡ a 2 ( m o d    m n ) a_1\equiv a_2(\mod mn) a1a2(modmn)

这表明 a 1 , a 2 a_1,a_2 a1,a2是第一个集合的相同元素。这就完成了第一个陈述的证明。
要证明(2),需要证明对b与c的任何已知值,至少可求得一个整数a满足

a ≡ b ( m o d    m ) 与 a ≡ c ( m o d    n ) a\equiv b(\mod m)与a\equiv c(\mod n) ab(modm)ac(modn)

这个同余式组有解的事实是很重要的,足以保证它有自己的名称。

中国剩余定理

设m与n是整数, g c d ( m , n ) = 1 gcd(m,n)=1 gcd(m,n)=1,b与c是任意整数,则同余式组

x ≡ b ( m o d    m ) 与 x ≡ c ( m o d    n ) x\equiv b(\mod m) 与 x\equiv c(\mod n) xb(modm)xc(modn)

恰有一个解 0 ≤ x < m n 0\le x<mn 0x<mn
证明由解第一个同余式 x ≡ b ( m o d    m ) x\equiv b(\mod m) xb(modm)开始。其解由形如 x = m y + b x=my+b x=my+b的所有数组成。将此代入第二个同余式得

m y ≡ c − b ( m o d    n ) my\equiv c-b(\mod n) mycb(modn)

已知 g c d ( m , n ) = 1 gcd(m,n)=1 gcd(m,n)=1,线性同余式定理告诉我们恰有一个解 y 1 , 0 ≤ y 1 < n y_1,0\le y_1<n y10y1<n。则

x 1 = m y 1 + b x_1=my_1+b x1=my1+b

给出了原来同余式组的解,这是唯一解 x 1 , 0 ≤ x 1 < m n x_1,0\le x_1<mn x1,0x1<mn,因为在0与n之间有唯一解 y 1 y_1 y1,且用m乘 y 1 y_1 y1 x 1 x_1 x1。这就完成了中国剩余定理的证明及公式 ϕ ( m n ) = ϕ ( m ) ϕ ( n ) \phi(mn)=\phi(m)\phi(n) ϕ(mn)=ϕ(m)ϕ(n)的证明。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值