数论概论读书笔记 18.幂、根与不可破密码

幂、根与不可破密码

前面我们已经了解了k次幂和k次根。

对于一个同余式 xkb( mod m) x k ≡ b (   m o d   m ) ,如果我们知道了k,b,m 且b和m互质,k和 φ(m) φ ( m ) 互质,则可求出解x

这里求解 φ(m) φ ( m ) 是关键。即要对 m m 进行分解。这是设计许多密码的基础。

首先选取两个大素数p,q ,接下来将它们相乘得到模 m=pq m = p q ,计算 φ(m)=φ(p)φ(q)=(p1)(q1) φ ( m ) = φ ( p ) φ ( q ) = ( p − 1 ) ( q − 1 )

再选取一个和 φ(m) φ ( m ) 互素的整数 k k

现在我们向全宇宙公开数m k k ,用m k k 对信息进行加密。

例如对于一个百万级的数m,可将信息写成6位数的表,信息数是 a1,a2,...,ar a 1 , a 2 , . . . , a r ,下一步,使用逐次平方法(快速幂)计算 ak1( mod m),...,akr( mod m) a 1 k (   m o d   m ) , . . . , a r k (   m o d   m ) ,这些值记为 b1,b2,...,br b 1 , b 2 , . . . , b r ,作为传输的数据。

有了b表如何求a表呢?即上一节所讨论的问题。即完成了加密和解密。

上面的加密方案的思想是很简单的一种:容易将两个大数乘起来,但是,很难将大数分解因数。

上述密码学方法称为公钥密码体制,由模m和指数k组成的加密密钥可公布于众,而解密方法是安全的。本节的思想称为RSA公钥密码体制

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值